Devoir en temps libre nº 4

Problème : Quelques résultats sur la suite de Fibonacci

On définit la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par : $F_0=0,\,F_1=1$ et la relation de récurrence : $\forall n\in\mathbb{N},\,F_{n+2}=F_{n+1}+F_n$

- 1. Déterminer la liste des 10 premiers nombres de Fibonacci (de F_1 à F_{10}) Écrire un programme Python permettant de calculer le n^{ième} terme de la suite de Fibonacci. Calculer F_n pour n égal á 100 j m où j est le jour de votre date de naissance et m le mois de naissance (indiquez ces données sur votre copie).
- 2. Montrer que : $\forall n \in \mathbb{N}, n \geq 6 \Longrightarrow F_n > n$. Qu'en déduit-on pour la suite $(F_n)_{n \in \mathbb{N}}$?
- 3. Montrer que : $\forall n \in \mathbb{N}, n \geqslant 2 \Longrightarrow F_n < F_{n+1} \leqslant 2F_n$.
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k = F_{n+2} 1.$
- 5. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k^2 = F_n F_{n+1}$.
- 6. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^{2n-1} F_k F_{k+1} = F_{2n}^2$.
- 7. Montrer que : $\forall n \in \mathbb{N}^*$, $F_{2n} = F_{n+1}^2 F_{n-1}^2$ et $F_{2n+1} = F_{n+1}^2 + F_n^2$.
- 8. Montrer que : $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^n \binom{2n-k}{k} = F_{2n+1}$ et $\sum_{k=0}^n \binom{2n+1-k}{k} = F_{2n+2}$
- 9. Montrer que, si on pose $\alpha = \frac{1+\sqrt{5}}{2} : \forall n \in \mathbb{N}^*, F_{n-1} + \alpha F_n = \alpha^n$
- 10. Montrer que, si on pose $\alpha = \frac{1+\sqrt{5}}{2}$ et $\beta = \frac{1-\sqrt{5}}{2}$: $\forall n \in \mathbb{N}, F_n = \frac{\alpha^n \beta^n}{\alpha \beta}$