SUITES NUMERIQUES

La notion de suite est connue depuis les Grecs (algorithme d'ARCHIMEDE (287 – 212 av J.C.) pour calculer une valeur approchée de Pi). Par contre, la notion de limite était mal appréciée et cette méconnaissance a donné lieu à de nombreux paradoxes (par exemple le paradoxe de la tortue et d'Achille, établi par ZENON D'ELEE (V^e siècle av J.C.)). Plusieurs analystes, et en particulier CAUCHY (1789 – 1857) travaillèrent sur des critères de convergence, mais la définition rigoureuse de convergence nécessitait une définition de ℝ : ce n'est qu'après ces travaux sur ℝ que WEIERSTRASS (1815-1897) put donner cette définition de convergence.

I) Généralités sur les suites réelles

<u>Définition</u>: Une <u>suite numérique</u> est une suite d'éléments de \mathbb{R} ou \mathbb{C} . On note S(K) l'ensemble des suites à valeurs dans K.

1) Suites bornées

<u>Définition dans S(R):</u> Soit $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{R})$.

 $U \text{ est } \underline{\textbf{major\'ee}} \Leftrightarrow \exists \ k \in \mathbb{R} | \ \forall n \in \mathbb{N}, \, u_n \leq k$

U est <u>minorée</u> $\Leftrightarrow \exists k' \in \mathbb{R} | \forall n \in \mathbb{N}, k' \leq u_n$

U est <u>bornée</u> \Leftrightarrow U est majorée et minorée $\Leftrightarrow \exists k \in \mathbb{R}^+ \mid \forall n \in \mathbb{N}, |u_n| \le k$

<u>Définition dans S(C)</u>: $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{C})$ est <u>bornée</u> $\Leftrightarrow \exists k \in \mathbb{R}^+ \mid \forall n \in \mathbb{N}, |u_n| \leq k$

Algèbre des suites bornées

Notation: On note $B(\mathbb{R})$ l'ensemble des suites réelles bornées. On note de même $B(\mathbb{C})$ l'ensemble des suites complexes bornées.

En utilisant les inégalités triangulaires et la norme d'un produit dans ℝ ou ℂ, on voit que:

- La somme de deux suites bornées est une suite bornée
- Le produit de deux suites bornées est une suite bornée
- Le produit d'une suite bornée par un scalaire est une suite bornée

2) Suites monotones

On se place dans $S(\mathbb{R})$.

<u>Définition</u>: Soit $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{R})$.

U est <u>croissante</u> $\Leftrightarrow \forall (n,p) \in \mathbb{N}^2$, $(n \le p \Rightarrow u_n \le u_p) \Leftrightarrow \forall n \in \mathbb{N}, u_n \le u_{n+1}$

 $U \text{ est } \underline{\textbf{strictement croissante}} \Leftrightarrow \forall (n,p) \in \mathbb{N}^2, \left(\ n$

U est <u>décroissante</u> $\Leftrightarrow \forall (n,p) \in \mathbb{N}^2$, $(n \le p \Rightarrow u_n \ge u_p) \Leftrightarrow \forall n \in \mathbb{N}, u_n \ge u_{n+1}$.

 $U \ est \ \underline{\textbf{strictement décroissante}} \Leftrightarrow \forall (n,p) \in \textbf{N}^2, \ \big(\ n u_p \ \big) \quad \Leftrightarrow \forall n \in \textbf{N}, \ u_n > u_{n+1}$

U est monotone ⇔ U est croissante ou est décroissante.

U est **strictement monotone** ⇔ U est strictement croissante ou strictement décroissante.

U est <u>stationnaire</u> \Leftrightarrow il existe un rang p tel que : $\forall n \in \mathbb{N}$, ($n \ge p \Rightarrow u_n = u_p$)

II) Suites réelles convergentes et suites réelles divergentes

1) Convergence et divergence

<u>Définition</u>: Soit $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{R})$. On dit que U est <u>convergente</u> \Leftrightarrow

 $\exists l \in \mathbb{R} | \forall \epsilon \in \mathbb{R}_{+}^{*}, \exists n_{0} \in \mathbb{N} | \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow | u_{n} - l | \leq \epsilon.$

 $\underline{\textbf{Remarque}} \text{: On peut remplacer "} \left| \ u_n - l \ \right| \leq \epsilon \text{ " par "} \left| \ u_n - l \ \right| < \epsilon \text{ " mais le programme demande} \leq .$

<u>Théorème</u>: Si la suite $(u_n)_{n \in \mathbb{N}}$ est convergente alors le nombre l rentrant dans la définition est unique.

<u>Définition</u>: Cet unique l est appelé <u>limite</u> de la suite $(u_n)_{n\in\mathbb{N}}$, on dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l et on note : $l=\lim_{n\to +\infty} \mathbf{u}_n$. On pourra également noté : $\mathbf{u}_n\to l$

<u>Dem</u>: Supposons par l'absurde que $(u_n)_{n\in\mathbb{N}}$ converge et qu'il existe deux éléments distincts l et l' tels que : \forall ϵ \in \mathbb{R}_+^* , \exists $n_1 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq n_1 \Rightarrow \mid u_n - l \mid \leq \epsilon$ (1) et \forall ϵ \in \mathbb{R}_+^* , \exists $n_2 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq n_2 \Rightarrow \mid u_n - l' \mid \leq \epsilon$ (2) Prenons $\epsilon = \frac{|l - l'|}{4}$. On a bien ϵ \in \mathbb{R}_+^* car on suppose $l \neq l'$.

Ainsi d'après (1) $\exists n_1 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow \mid u_n - l \mid \le \varepsilon \text{ et d'après (2)} : \exists n_2 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \ge n_2 \Rightarrow \mid u_n - l' \mid \le \varepsilon \text{ Soit } n_0 = \sup(n_1, n_2). \text{ On a } \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow (\mid u_n - l \mid \le \varepsilon \text{ et } \mid u_n - l' \mid \le \varepsilon).$

 $\text{Or}: \ l-l'=l-u_n+u_n-l'. \ \text{D'où}: \ \left|\ l-l'\ \right| \leq \left|\ l-u_n\ \right| \ + \left|\ u_n-l'\ \right| \ \text{.} \quad \text{Ainsi} \ \forall \ n\geq n_0, \ \left|\ l-l'\ \right| \leq 2 \ \epsilon = \frac{\left|l-l'\right|}{2} \ \text{ce qui est impossible}$

si |l-l'| > 0. On obtient donc une contradiction avec l'hypothèse de départ et donc le théorème est montré.

Remarque: $(u_n)_{n \in \mathbb{N}}$ converge vers $l \Leftrightarrow \forall \varepsilon \in \mathbb{R}^*_+$, $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow |u_n - l| \leq \varepsilon$

Définition: Soit $U \in S(\mathbb{R})$. On dit que U est <u>divergente</u> sssi elle n'est pas convergente.

Définition: Soit $U \in S(\mathbb{R})$. On dit que U <u>diverge vers $+\infty$ si et seulement si :</u>

 $\forall M \in \mathbb{R}$, $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow u_n \ge M$. On note $\lim_{n \to +\infty} u_n = +\infty$

<u>Définition:</u> Soit $U \in S(\mathbb{R})$. On dit que U <u>diverge vers $-\infty$ si et seulement si :</u>

 $\forall M \in \mathbb{R} \text{ , } \exists \text{ } n_0 \in \mathbb{N} \text{ } | \text{ } \forall n \in \mathbb{N}, \text{ } n \geq n_0 \Rightarrow u_n \leq M. \text{ } \text{ On note } \lim_{\substack{n \to +\infty}} u_n \text{ } = -\infty$

Remarque: Il y a plusieurs façons de diverger : si $u_n = n$, (u_n) diverge vers $+\infty$; si $u_n = (-1)^n$, (u_n) diverge en oscillant de 1 à -1; si $u_n = \sin(n)$, (u_n) diverge en restant dans [-1,1]; si $u_n = (-1)^n$ n, (u_n) diverge en s'éloignant indéfiniment dans \mathbb{R}^+ et \mathbb{R}^- ...

<u>Remarques</u>: * Soit $U \in S(\mathbb{R})$ et $l \in \mathbb{R}$. Dire que la suite $U = (u_n)_{n \in \mathbb{N}}$ converge vers l équivaut à dire que la suite $(u_n - l)$ converge vers 0.

** Le caractère asymptotique (converger vers une certaine limite ou pas) d'une suite ne dépend pas des premiers termes : c'est un caractère local.

Théorème: Toute suite convergente est bornée.

Dem: Soit $U \in S(\mathbb{R})$ de limite $l \in \mathbb{R}$. Fixons $\varepsilon > 0$, par exemple $\varepsilon = 1$.

Alors $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow |u_n - l| \le 1 = \varepsilon$. On fixe un tel n_0 .

Soit $n \in \mathbb{N}$, $n \ge n_0$. On a $|u_n| \le |u_n - l| + |l| \le 1 + |l| = A$.

Soit $A' = \sup_{0 \le n \le n_0-1} |u_n|$: A' existe et est fini car on prend le sup d'un nombre fini de réels. On a pour $n < n_0$, $|u_n| \le A'$

Soit alors $B = \sup\{A, A'\}$. On a $\forall n \in \mathbb{N}$, $|u_n| \le B$ en regroupant les deux inégalités précédentes. Ainsi (u_n) est bornée.

<u>Théorème</u>: Si une suite $(u_n)_{n \in \mathbb{N}}$ converge vers l > 0, alors il existe un rang à partir duquel $u_n > 0$.

Exercice: En utilisant une démonstration du même style, montrer que si U est une suite de réels qui converge vers une limite *l* strictement positive alors il existe un rang à partir duquel tous les termes de la suite sont strictement positifs.

2) Opérations algébriques sur les limites

<u>Théorème</u>: Soient $U = (u_n)_{n \in \mathbb{N}}$ et $V = (v_n)_{n \in \mathbb{N}}$ deux suites convergentes de \mathbb{R} de limites respectives l et m.

- a) La suite $W = (w_n)_{n \in \mathbb{N}} = U + V$ est convergente de limite l + m
- b) La suite $P = (p_n)_{n \in \mathbb{N}} = U \times V$ est convergente de limite $l \times m$
- c) Soit $\lambda \in \mathbb{R}$. La suite $Q = (q_n)_{n \in \mathbb{N}} = \lambda U$ converge vers λJ

<u>Dem</u>: **a)** Soit s = l + m. $\forall n \in \mathbb{N}, w_n - s = (u_n - l) + (v_n - m)$.

 $Ainsi \ \forall \overline{n \in \textbf{N}, \ |w_n - s| \leq |u_n - l| + |v_n - m|}. \ Fixons \ \epsilon > 0. \ \exists n_1 \in \textbf{N} | \forall n \in \textbf{N}, \ n \geq n_1 \Rightarrow |u_n - l| \leq \epsilon' = \frac{\epsilon}{2} \ et \ \exists n_2 \in \textbf{N} | \forall n \in \textbf{N}, \ n \geq n_1 \Rightarrow |v_n - m| \leq \epsilon'.$

Ainsi, si on pose $n_0 = \sup(n_1, n_2)$, on $a : \forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow |w_n - s| \le \varepsilon$. Ainsi W converge vers s.

b) Soit $p = l \times m$. $\forall n \in \mathbb{N}$, $p_n - p = m (u_n - l) + u_n(v_n - m)$.

Ainsi $\forall n \in \mathbb{N}, |p_n - p| \le |m| |u_n - l| + |u_n| |v_n - m|$. Or $(u_n)_{n \in \mathbb{N}}$ est convergente donc bornée. Soit K>0 un majorant de $(|u_n|)$ et de |m| On $a: \forall n \in \mathbb{N}, |p_n - p| \le K (|u_n - l| + |v_n - m|)$. Fixons $\epsilon > 0$. $\exists n_1 \in \mathbb{N} | \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow |u_n - l| \le \epsilon' = \frac{\epsilon}{2K}$ et $\exists n_2 \in \mathbb{N} | \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow |v_n - m| \le \epsilon'$

Ainsi, si on pose $n_0 = \sup(n_1, n_2)$, on $a : \forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow |p_n - p| \le \epsilon$. P converge vers p.

c) La suite Q est la suite produit de la suite constante égale à λ (qui converge vers λ) et de la suite U : on utilise donc le résultat du **b**)

Espace vectoriel des suites qui convergent vers 0

Théorème: Le produit d'une suite convergeant vers 0 par une suite bornée convergea vers 0.

<u>Dem</u>: Soit $(u_n)_{n\in\mathbb{N}}$ une suite de limite nulle et $(v_n)_{n\in\mathbb{N}}$ une suite bornée. Soit K>0 un majorant de $(|v_n|)_{n\in\mathbb{N}}$.

 $On \ a \ \forall n \in \text{\it I\hspace{-.07in}N}, \ |u_n \ v_n| = |u_n| \ |v_n| \leq K \ |u_n| \qquad \qquad \text{. Soit ϵ>0. On pose ϵ'} = \frac{\epsilon}{K}.$

 $On \; sait: \exists n_0 \in \mathbb{N} | \forall n \in \mathbb{N}, \, n \geq n_0 \Rightarrow |u_n| \leq \epsilon'. \; Ainsi \; \forall n \in \mathbb{N}, \, n \geq n_0 \Rightarrow |u_n \; v_n| \leq \epsilon. \; CQFD$

Quotient de deux suites

Théorème: Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente de limite $l\neq 0$. Alors :

1) Il existe un rang à partir duquel tous les termes de la suite sont non nuls

A partir de ce rang n_0 , on peut donc définir la suite $(v_n)_{n \in \mathbb{N}}$ des inverses des u_n

2) La suite $(v_n)_{n \in \mathbb{N}}$ converge et a pour limite $\frac{1}{t}$

 $\underline{\textbf{Dem:}} \ \ \textbf{1)} \ \textit{l} \neq 0. \ \ \text{On considère} \ \textit{k} = |\textit{l}| \in \mathbb{R}_{+}^{*} \ . \ \ \text{Soit} \ \epsilon = \frac{\textit{k}}{2}. \ \exists n_{0} \in \mathbb{N} | \forall n \in \mathbb{N}, \ n \geq n_{0} \Rightarrow |u_{n} - \textit{l}| \leq \epsilon$

 $Or \; u_n = (u_n - l) + l \; d'où \; |u_n| \geq \; \left| \; \right| \; u_n - l \; \left| - \; \right| \; l \; \left| \; \right|. \qquad D'où \; n \geq n_0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; \forall n \geq n_0, \; u_n \neq 0 \\ \Rightarrow |u_n| \geq \epsilon = \frac{k}{2} \; . \; Ainsi \; |u_n| \geq \epsilon =$

2) $v_n - \frac{1}{l} = \frac{l - u_n}{l u_n}$. Ainsi pour $n \ge n_0$, comme on a $|u_n| \ge \frac{|l|}{2}$, on a également $\left| \begin{array}{c} v_n - \frac{1}{l} \end{array} \right| \le \frac{2|l - u_n|}{|l|^2}$

Soit alors $\epsilon > 0$ et $\epsilon' = \frac{\epsilon |I|^2}{2}$. $\exists \ n_1 \in \mathbb{N} \ | \ \forall n \in \mathbb{N}, \ n \ge n_1 \Rightarrow |u_n - I| \le \epsilon'$.

On pose $n_2 = sup(n_0, n_1)$. On a bien : $\forall n \in \mathbb{N}, \, n \ge n_2 \Rightarrow \left| \begin{array}{c} v_n - \frac{1}{l} \end{array} \right| \le \epsilon$ D'où $lim(v_n) = \frac{1}{l}$

<u>Corollaire</u>: Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes de limite respectives l et m. Si $m\neq 0$, $\exists N\in\mathbb{N}$ $|\forall n\geq N$, $w_n=\frac{u_n}{v_n}$ existe et la suite $(w_n)_{n\geq N}$ converge et a pour limite $\frac{l}{m}$

<u>Dem</u>: Il suffit d'écrire : (w_n) produit de (u_n) et de l'inverse de (v_n) .

On peut regrouper les résultats précédents dans un tableau (on pourra montrer en exercice les résultats donnés pour les suites réelles divergeant vers $+\infty$ ou $-\infty$)

Ne figurent pas dans ce tableau les formes indéterminées 1^{∞} , ∞^0 , 0^0 qui s'obtiennent à partir des autres

lim u _n	lim v _n	lim (u _n +v _n)	lim (u _n v _n)	$\lim \frac{u_n}{v_n}$
l	m	l + m	<i>l</i> m	$\frac{l}{m}$ si m $\neq 0$
m	0	m	0	F.I. (sauf si v _n a un signe constant à partir d'un certain rang)
m	$\varepsilon \infty$, avec ε $= \pm 1$	∞ 3	$\begin{array}{ccc} \varepsilon \infty & \text{si m} > 0 \\ -\varepsilon \infty & \text{si m} < 0 \\ \textbf{F.I.} & \text{si m} = 0 \end{array}$	0
+∞	0	$+\infty$	F.I.	F.I. (sauf si v _n a un signe constant à partir d'un certain rang)
+∞	+∞	$+\infty$	$+\infty$	F.I.
+∞	$-\infty$	F.I.	$-\infty$	F.I.
0	∞ 3	∞ 3	F.I.	0
0	0	0	0	F.I.
$-\infty$	- ∞	- 8	+ ∞	F.I.

3) Compatibilité du passage à la limite avec la relation d'ordre

<u>Théorème</u>: Soient $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites réelles convergentes de limites respectives a et b avec a
b. Alors $\exists N \in \mathbb{N} \mid \forall n \in \mathbb{N}$, $n \geq N \Rightarrow a_n < b_n$

<u>Dem</u>: Soit h = b-a > 0. Soit $\epsilon = \frac{h}{2}$. D'après les convergences de (a_n) et (b_n) , on sait :

 $\begin{array}{l} \exists \ n_0 \in \textbf{N} \mid \forall n \in \textbf{N}, \, n \geq n_0 \Rightarrow |a_n - a| \leq \epsilon \quad \text{ et } \quad \exists \ n_1 \in \textbf{N} \mid \forall n \in \textbf{N}, \, n \geq n_1 \Rightarrow |b_n - b| \leq \epsilon \\ \text{Ainsi si } N = \sup \ (n_0, n_1), \, \text{ on } a \ \forall n \in \textbf{N}, \, n \geq N \Rightarrow a_n \leq a + \epsilon < a + \frac{h}{2} = \frac{a + b}{2} = b - \frac{h}{2} < b - \epsilon \leq b_n \end{array}$

<u>Théorème</u>: <u>Passage à la limite dans une inégalité large</u>: Soient $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites réelles convergentes de limites respectives a et b. On suppose que : $\exists \mathbb{N} \in \mathbb{N} \mid \forall n \in \mathbb{N}$, $n \ge \mathbb{N} \Rightarrow a_n \le b_n$. Alors $a \le b$

<u>Dem:</u> Supposons par l'absurde que a>b. D'après le théorème précédent,

 $\exists n_1 \in \textbf{N} \mid \forall n \in \textbf{N} \text{ , } n \geq n_0 \Rightarrow a_n \leq b_n \text{ ce qui contredit l'hypothèse sur les suites } (a_n) \text{ et } (b_n).$

Remarque: Le théorème est faux avec les inégalités strictes (cf. (0) et $\left(\frac{1}{n+1}\right)$)

Convergence par encadrement

Théorème: Convergence par encadrement ou théorème des gendarmes:

Soient trois suites de réels $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que

 $H1: \exists N \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq N \Rightarrow u_n \leq v_n \leq w_n.$

H2: Les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent

H3: Les limites l' et l'' de $(u_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ sont identiques et valent l.

Conclusion: Alors la suite $(v_n)_{n \in \mathbb{N}}$ converge et a pour limite l.

<u>Dem</u>: Supposons **H1**, **H2** et **H3** et considérons l'entier N donné par **H1**.

On a : $\forall n \in \mathbb{N}$, $n \ge N \Rightarrow u_n - l \le v_n - l \le w_n - l$. Donc $\forall n \in \mathbb{N}$, $n \ge N \Rightarrow |v_n - l| \le \sup(|u_n - l|, |w_n - l|)$

Soit ε >0. On sait d'après les convergences de (u_n) et de (w_n) que :

 $\exists n_0 \in \textbf{N} \mid \forall n \in \textbf{N} \text{ , } n \geq n_0 \Rightarrow |u_n - l| \leq \epsilon \quad \text{et} \qquad \exists n_1 \in \textbf{N} \mid \forall n \in \textbf{N} \text{ , } n \geq n_1 \Rightarrow |w_n - l| \leq \epsilon$

D'où en prenant $n_2 = \sup(n_0, n_1, N)$ on a $\forall n \in \mathbb{N}$, $n \ge n_2 \Rightarrow |v_n - l| \le \varepsilon$ Ainsi (v_n) converge et sa limite est l.

Remarque: Il ne faut pas oublier **H3**.

Exemple: $* u_n = \frac{n}{n^2+1} + \frac{n}{n^2+2} + ... + \frac{n}{n^2+n}$. Or $\forall k \in \mathbb{N}^*$, $n^2+1 \le n^2+k \le n^2+n$,

$$\begin{split} \text{d'où:} \ & \frac{1}{1+\frac{1}{n}} \leq u_n \leq \frac{1}{1+\frac{1}{n^2}}. \ \text{Or} \ & \text{lim}\bigg(\frac{1}{1+\frac{1}{n}}\bigg) = 1 = \text{lim}\left(\frac{1}{1+\frac{1}{n^2}}\right) \ \text{donc} \ (u_n) \ \text{converge vers} \ 1 \\ & ** u_n = \frac{1}{n+1} \, + \frac{1}{n+2} + ... + \frac{1}{n+n} \end{split}$$

 $En \ utilisant: \ \forall k \in \textbf{N}^*, \ n+1 \leq n+k \leq 2n \ , \ on \ montre: \\ \frac{n}{2n} \leq u_n \leq \frac{n}{n+1} \ \ . \\ Or \ ces \ deux \ suites \ "encadrantes" \ n'ont \ pas \ la \ même \ n'ont \ pas \ la \ même \ . \\ Or \ ces \ deux \ suites \ "encadrantes" \ n'ont \ pas \ la \ même \ n'ont \ pas \ la \ même \ . \\ Or \ ces \ deux \ suites \ "encadrantes" \ n'ont \ pas \ la \ même \ n'ont \ pas \ n'ont \ n'ont \ pas \ n'ont \ pas \ n'ont \ n'ont \ n'ont \ pas \ n'ont \ n'on$

limite donc on ne peut pour l'instant rien dire de la convergence de (u_n) . En fait il faut utiliser les sommes de Riemann et on montre que (u_n) converge et sa limite est $\ln(2)$.

<u>Théorème</u>: Divergence par minoration: Soient deux suites de réels $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ telles que

 $\mathbf{H1}: \exists N \in \mathbb{N} \mid \forall n \in \mathbb{N}, \, n \geq N \Rightarrow u_n \leq v_n.$

H2: La suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$

Conclusion: Alors la suite $(v_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.

<u>Dem</u>: Supposons **H1** et **H2** et considérons l'entier N donné par **H1**.

Soit $M \in \mathbb{R}$. D'après la divergence de (u_n) vers $+\infty$: $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow u_n \ge M$

Soit $n_1 = \sup(N, n_0)$. On a: $\forall n \in \mathbb{N}$, $n \ge n_1 \Rightarrow v_n \ge M$: Ainsi v_n diverge vers $+\infty$.

Théorème: Soit $(v_n)_{n \in \mathbb{N}}$ suite de réels et $(u_n)_{n \in \mathbb{N}}$ suite de réels telles que :

 $H1: \exists N \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq N \Rightarrow |u_n| \leq v_n$. $H2: La suite (v_n)_{n \in \mathbb{N}}$ converge vers 0

Conclusion: Alors la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

Dem: Supposons **H1** et **H2** et considérons l'entier N donné par **H1**.

Soit $\varepsilon > 0$. On sait d'après la convergence de (v_n) que : $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow |v_n| \le \varepsilon$

Aussi en prenant $n_1 = \sup(n_0, N)$ on a $\forall n \in \mathbb{N}$, $n \ge n_1 \Rightarrow |u_n| \le \varepsilon$ Ainsi (u_n) converge et sa limite est 0.

<u>Corollaire</u> Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels convergeant vers l. Alors la suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers |l|

<u>Dem</u>: On applique le résultat précédent en remarquant : $||\mathbf{u}_n| - |l|| \le |\mathbf{u}_n - l|$

III) Théorèmes fondamentaux sur les suites

Théorème de la limite monotone

Théorème: Théorème de la limite monotone

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante de réels. Alors :

La suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si elle est majorée.

Le cas échéant, la limite de $(u_n)_{n \in \mathbb{N}}$ est la borne supérieure de $U = \{u_0, u_1, u_2, ..., u_n, ...\}$.

<u>Dem:</u> \Rightarrow Si $(u_n)_{n \in \mathbb{N}}$ converge. Soit l sa limite. On a alors :

- $\forall n \in \mathbb{N}$, $u_n \le l$ car (u_n) croissante. En effet si : $\exists p \in \mathbb{N} \mid u_p > l$ alors $\forall n \ge p$, $u_n l \ge u_p l > 0$ donc $(u_n l)$ ne pourrait converger vers 0. En particulier l majorant de U (1)
- Soit $\varepsilon>0$. Comme (u_n) converge vers l, $\exists p \in \mathbb{N} \mid \forall n \in \mathbb{N}$, $n \ge p \Rightarrow l \varepsilon \le u_n \le l + \varepsilon$. Aussi, comme (u_n) majorée par l, $\forall n \in \mathbb{N}$, $n \ge p \Rightarrow l \varepsilon \le u_n \le l$. En particulier, $\forall \varepsilon>0$, $\exists t \in U \mid l \varepsilon \le t \le l$ (2) De (1) et (2) on déduit que l est la borne supérieure de U.

 \leftarrow Si (u_n) majorée. Alors U est une partie non vide et majorée de \mathbb{R} (les majorants de U sont les majorants de la suite (u_n)).

U admet donc une borne supérieure que l'on notera M.

Soit ε >0. Par la caractérisation de borne supérieure dans le cas réel, il existe $t \in U$ tel que :

 $M - \varepsilon \le t \le M$. Or $t \in U$, donc $\exists p \in \mathbb{N} \mid t = u_p$. De plus, comme (u_n) croissante, $\forall n \in \mathbb{N}$, $n \ge p \Rightarrow u_n \ge u_p$.

On a alors : $\forall n \in \mathbb{N}$, $n \ge p \Rightarrow M - \varepsilon \le u_n \le M$ (car M majore (u_n)) Ainsi la suite (u_n) converge vers M.

Corollaire 1: Si $(u_n)_{n\in\mathbb{N}}$ décroissante. $(u_n)_{n\in\mathbb{N}}$ converge ssi $(u_n)_{n\in\mathbb{N}}$ minorée.

Corollaire 2: Si $(u_n)_{n\in\mathbb{N}}$ est croissante. Si $(u_n)_{n\in\mathbb{N}}$ non majorée alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

<u>Dem</u>: Immédiat : pour le 1) on travaille avec l'opposée de (u_n) qui est croissante.

Pour le 2), on écrit que l'on a la contraposée d'un des sens de l'équivalence montrée.

Suites adjacentes

<u>Théorème</u>: Deux suites adjacentes convergent et ont la même limite.

<u>Dem</u>: Quitte à changer les indices on peut considérer p=0. Soit $(w_n)_{n\in\mathbb{N}} = (v_n - u_n)_{n\in\mathbb{N}}$

On a : $\forall n \in \mathbb{N}$, $w_{n+1} - w_n = (v_{n+1} - v_n) + (u_n - u_{n+1}) \le 0$. Ainsi $(w_n)_{n \in \mathbb{N}}$ décroissante.

 $\text{De plus } (w_n)_{n\in \textbf{N}} \text{ converge vers } 0. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } \forall n\in \textbf{N}, \ w_n \geq 0 \text{ i.e. } u_n \leq v_n. \\ \text{Ainsi } 0 \text{ minore } (w_n)_{n\in \textbf{N}} \text{ donc } (w_n)_{n\in \textbf{N}} \text{ donc$

Ainsi, comme $(u_n)_{n\in\mathbb{N}}$ croissante et $(v_n)_{n\in\mathbb{N}}$ décroissante : $\forall n\in\mathbb{N}, u_0\leq u_n\leq v_n\leq v_0$. D'où

 $(u_n)_{n\in\mathbb{N}}$ croissante majorée donc converge (vers l_1). De même $(v_n)_{n\in\mathbb{N}}$ converge (vers l_2).

Mais alors $(w_n)_{n\in\mathbb{N}}$ converge vers l_2-l_1 . Or $(w_n)_{n\in\mathbb{N}}$ converge vers 0 donc $l_2=l_1$

Remarque: On a alors: $\forall n \in \mathbb{N}$, $u_n \le l \le v_n$

Dichotomie

Principe: On considère le segment $I_0 = [a_0, b_0]$. Soit $c_0 = \frac{a_0 + b_0}{2}$.

On a deux segments $[a_0, c_0]$ et $[c_0, b_0]$. On en choisit un : on le note $I_1 = [a_1, b_1]$.

Puis on considère $c_1 = \frac{a_1 + b_1}{2}$ et on choisit un segment parmi $[a_1, c_1]$ et $[c_1, b_1]$ celui qui répond à la question que l'on se pose

(par exemple qu'une certaine valeur est dans l'intervalle) et on le notera $I_2 = [a_2, b_2]$ et on réitère le procédé.

On crée ainsi deux suites adjacentes $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ pour lesquelles la valeur cherchée est dans l'intervalle $I_n=[a_n\,,\,b_n]$ pour tout n. Les suites convergent donc vers la valeur cherchée.

IV) Suites extraites

Soit φ une injection croissante de N dans N (φ est strictement croissante).

Par récurrence immédiate on montre que $\forall n \in \mathbb{N}$, $\varphi(n) \ge n$.

<u>Définition</u> : Soit $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{R})$. On appelle <u>suite extraite de (\mathbf{u}_n) (et associée à </u>

<u>l'extractrice</u> φ) la suite $(v_p)_{p \in \mathbb{N}}$ définie par : $\forall p \in \mathbb{N}$, $v_p = u_{\phi(p)}$.

<u>Proposition</u>: Toute suite $(v_p)_{p\in \mathbb{N}}$ extraite d'une suite $(u_n)_{n\in \mathbb{N}}$ convergente est convergente et a la même limite que $(u_n)_{n\in \mathbb{N}}$

<u>Dem:</u> Soit *l* la limite de (u_n) et φ l'extractrice donnant (v_p) . Soit $\varepsilon > 0$.

 $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow |u_n - l| \leq \varepsilon.$

Or $\forall n \in \mathbb{N}$, $\phi(n) \ge n$. En particulier $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow \phi(n) \ge n_0 \Rightarrow |u_{\phi(n)} - l| = |v_n - l| \le \epsilon$

Ainsi $(v_n)_{n \in \mathbb{N}}$ converge vers l.

Remarque: La réciproque du théorème est vraie si elle s'énonce " Si une suite est telle que toutes ses suites extraites convergent alors elle converge".

Par contre si on l'énonce : " Si une suite est telle qu'une de ses suites extraites converge alors elle converge" cette réciproque est fausse.

Exemple: Soit $u_n = (-1)^n + \frac{1}{n}$. (u_n) diverge car deux de ses suites extraites convergent mais vers des limites distinctes.

<u>Proposition</u>: Soit une suite de réels $(u_n)_{n\in\mathbb{N}}$. On suppose que les deux suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite l. Alors la suite $(u_n)_{n\in\mathbb{N}}$ converge également vers l

<u>Dem</u>: Soit ε >0. Il existe p et q tels que : $\forall n \in \mathbb{N}$, $n \ge p \Rightarrow |u_{2n} - l| \le \varepsilon$ et $\forall n \in \mathbb{N}$, $n \ge q \Rightarrow |u_{2n+1} - l| \le \varepsilon$ On pose $n_0 = \sup(2p, 2q+1)$. On a alors : $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow |u_n - l| \le \varepsilon$. Ainsi $(u_n)_{n \in \mathbb{N}}$ converge vers l.

Théorème de Bolzano - Weierstrass

<u>Théorème de Bolzano - Weierstrass</u>: De toute suite bornée de réels on peut extraire une sous-suite convergente.

<u>Dem</u>: Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée. Soit $I_0=[a_0,b_0]$ tel que : $\forall n\in\mathbb{N},\,u_n\in I_0$

Soit $c_0 = \frac{a_0 + b_0}{2}$. Dans $[a_0, c_0]$ ou $[c_0, b_0]$, il y a une infinité de termes u_n (pour être plus précis : il y a une infinité de n tel que $u_n \in [a_0, c_0]$ ou il y a une infinité de n tel que $u_n \in [c_0, b_0]$)

Soit alors I_1 un de ces segments ayant une infinité de termes u_n : $I_1 = [a_1, b_1]$.

Soit $c_1 = \frac{a_1 + b_1}{2}$. Dans $[a_1, c_1]$ ou $[c_1, b_1]$, il y a une infinité de termes u_n . Soit alors I_2 un de ces segments ayant une infinité

On crée ainsi une suite dichotomique de segments emboîtés $(I_n)_{n\in\mathbb{N}}$ avec $I_n=[a_n,b_n]$ où $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont deux suites adjacentes. On note l la limite commune.

Soit alors $\varphi: \mathbb{N} \to \mathbb{N}: \varphi(0) = 0$ et $\varphi(n)$ est le plus petit indice $p > \varphi(n-1)$ tel que $u_p \in I_n$

 φ est bien définie car dans chaque I_n on a une infinité de termes de la suite $(u_n)_{n\in\mathbb{N}}$.

De plus, par construction, ϕ est strictement croissante. Enfin, $\forall n \in \mathbb{N}, \, u_{\phi(n)} \in I_n$.

Aussi, d'après le théorème des gendarmes, puisque $\forall n \in \mathbb{N}$, $a_n \leq u_{\phi(n)} \leq b_n$, $(u_{\phi(n)})_{n \in \mathbb{N}}$ converge vers l.

C'est une suite extraite de $(u_n)_{n\in \mbox{\it N}}$ et qui est convergente.

V) Traduction séquentielle de certaines propriétés

<u>Définition</u>: Soit A une partie de \mathbb{R} . On dit que A est une partie dense dans \mathbb{R} si elle rencontre tout intervalle ouvert non vide de \mathbb{R} .

Exemple: On a déjà vu que Q et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans \mathbb{R} . C'est aussi le cas de \mathbb{D} .

Proposition : Caratérisation séquentielle de la densité Soit A une partie de R. Alors :

A est dense dans \mathbb{R} ssi \forall x $\in \mathbb{R}$, \exists $(u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ telle que $(u_n)_{n \in \mathbb{N}}$ converge vers x

<u>Dem:</u> \Longrightarrow On suppose A dense dans \mathbb{R} . Soit $x \in \mathbb{R}$. Pour tout n dans \mathbb{N} , A rencontre $]x - 10^{-n}$, $x + 10^{-n}$ [. Soit u_n un élément de A dans cet intervalle. Alors, d'après le th des gendarmes, $(u_n)_{n \in \mathbb{N}}$ converge vers x.

<u>Proposition</u>: Soit A une partie non vide majorée de \mathbb{R} . Alors: $\exists (u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ qui converge vers $\sup(A)$

<u>Dem</u>: On applique successivement la caractèrisation de la borne sup avec $\varepsilon = 10^{-n}$ et on crée ainsi une suite de A convergeant vers $\sup(A)$.

Proposition: Soit A une partie ni vide ni majorée de \mathbb{R} . Alors: $\exists (u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ qui diverge vers $+\infty$

VI) Suites complexes

Convergence et divergence

<u>Définition dans S(C)</u>: Soit $U = (u_n)_{n \in \mathbb{N}} \in S(\mathbb{C})$. On dit que U est <u>convergente</u> $\Leftrightarrow \exists l \in \mathbb{C} | \forall \epsilon \in \mathbb{R}_+^*, \exists n_0 \in \mathbb{N} | \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow | u_n - l | \leq \epsilon$.

<u>Théorème</u>: Si la suite $(u_n)_{n \in \mathbb{N}}$ est convergente alors le nombre l rentrant dans la définition est unique.

<u>Définition</u>: Cet unique l est appelé <u>**limite**</u> de la suite $(u_n)_{n \in \mathbb{N}}$, on dit que la suite $(u_n)_{n \in \mathbb{N}}$ converge vers l et on note : $l = \lim_{n \to +\infty} u_n$

 $\underline{\mathbf{Dem}}$: Comme pour \mathbb{R}

Remarque: $(u_n)_{n \in \mathbb{N}}$ converge vers $l \Leftrightarrow \forall \varepsilon \in \mathbb{R}_+^*$, $\exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow |u_n - l| \le \varepsilon$ **Définition:** Soit $U \in S(\mathbb{C})$. On dit que U est <u>divergente</u> sssi elle n'est pas convergente.

Théorème: Toute suite convergente est bornée.

<u>**Dem**</u>: Même que pour ℝ

Caractérisation par les parties réelles et imaginaires

<u>Théorème</u>: Soit $U \in S(\mathbb{C})$. Soit $R = (R_n)$ et $I = (I_n)$ les suites des parties réelles et imaginaires des u_n : $R_n = Re(u_n)$ et $I_n = Im(u_n)$. R et I sont deux suites réelles.

Alors : U est convergente \Leftrightarrow R et I sont convergentes.

De plus, si tel est le cas, les parties réelle et imaginaire de la limite de U sont les limites de R et I.

<u>Dem</u>: \Rightarrow Si U converge. Soit l sa limite, l' = Re(l) et l'' = Im(l).

Soit $\varepsilon > 0$. $\exists n_0 \in \mathbb{N} | \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow |u_n - l| \le \varepsilon$. Or $|u_n - l| \ge |\text{Re}(u_n - l)| = |R_n - l'|$ et de même $|I_n - l''| \le |u_n - l|$.

 $Aussi: \forall n {\in} \textbf{N}, \, n {\geq} n_0 \Rightarrow |R_n {-} l'| \leq \epsilon \; \; \text{et} \; \forall n {\in} \textbf{N}, \, n {\geq} n_0 \Rightarrow |I_n {-} l''| \, \leq \epsilon$

Ainsi: $\forall \ \epsilon \in \mathbb{R}_+^*$, $\exists \ n_0 \in \mathbb{N} \mid n \ge n_0 \Rightarrow |R_n - l'| \le \epsilon$: R converge vers l'

 $\forall \ \epsilon \in \mathbb{R}_{+}^{*}, \ \exists \ n_{0} \in \mathbb{N} \mid n \geq n_{0} \Rightarrow |I_{n}-l''| \leq \epsilon : I \text{ converge vers } l''.$

 \subseteq Si R converge vers l' et I converge vers l''. Soit l = l' + i l''

 $On \ a: \ \forall n \in I\!\!N, \ |u_n - l| \leq |R_n - l'| + |I_n - l''| \ (\text{inégalité triangulaire appliquée à } \ R_n - l' \ \text{et i}(I_n - l''))$

Fixons $\varepsilon > 0$. $\exists n_1 \in \mathbb{N} | \forall n \in \mathbb{N}, \ n \ge n_1 \Rightarrow |R_n - l'| \le \varepsilon' = \frac{\varepsilon}{2} \text{ et } \exists n_2 \in \mathbb{N} | \forall n \in \mathbb{N}, \ n \ge n_1 \Rightarrow |I_n - l''| \le \varepsilon'$

Ainsi, si on pose $n_0 = \sup(n_1, n_2)$, on $a : \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow |u_n - l| \le \varepsilon$. CQFD

<u>Propriété</u>: Soit (u_n) une suite de réels ou de complexes convergeant vers l. Alors la suite des modules $(|u_n|)$ converge vers |l|

Dem: Comme pour ℝ

Opérations algébriques sur les limites

Les résultats concernant les opérations algèbriques se prolongent

Théorème de Bolzano - Weierstrass

<u>Théorème de Bolzano - Weierstrass</u>: De toute suite bornée de complexes on peut extraire une sous-suite convergente.

Dem: Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée. Soit φ strictement croissante telle que $(\operatorname{Re}(u_{\varphi(n)}))_{n\in\mathbb{N}}$.

Mais alors $(Im(u_{\phi(n)}))_{n\in\mathbb{N}}$ est une suite réelle bornée dont on peut extraire une suite convergente $(Im(u_{\phi\circ\theta(n)}))_{n\in\mathbb{N}}$ Ainsi $(u_{\phi\circ\theta(n)})_{n\in\mathbb{N}}$ converge

VII) Suites particulières

1) Suite arithmétique

<u>Définition</u> Soit $U = (u_n)_{n \in \mathbb{N}} \in S(K)$. On dit que U est <u>une suite arithmétique</u> $\Leftrightarrow \exists r \in K | \forall n \in \mathbb{N}, u_{n+1} - u_n = r$.

<u>Propriété</u>: Si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison r, on a : $\forall n\in\mathbb{N}$, $u_n=u_0+n$ r.

<u>Dem</u>: On peut procéder soit par récurrence soit en introduisant la somme téléscopique $\sum_{k=0}^{n-1} \left(u_{k+1} - u_k \right)$

2) Suite géométrique

<u>Définition</u> Soit $U = (u_n)_{n \in \mathbb{N}} \in S(K)$. On dit que U est <u>une suite géométrique</u> $\Leftrightarrow \exists q \in K | \forall n \in \mathbb{N}, u_{n+1} = q \times u_n$.

<u>Propriété</u>: Si $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q, on a : $\forall n\in\mathbb{N}$, $u_n=q^n\times u_0$

<u>Dem</u>: On peut procéder par récurrence. On peut aussi utiliser un produit téléscopique si les termes sont non nuls.

3) Suite arithmético-géométrique

Définition Soit $U = (u_n)_{n \in \mathbb{N}} \in S(K)$. On dit que U est <u>une suite arithmético-géométrique</u> $\Leftrightarrow \exists (r, q) \in K^2 | \forall n \in \mathbb{N}, u_{n+1} = q \times u_n + r.$

Remarque: Pour obtenir une expression du terme général d'une suite arithmético-géométrique définie par la relation $\forall n \in \mathbb{N}$, $u_{n+1} = q \times u_n + r$, on dispose de deux méthodes :

- soit on cherche une constante α telle que la suite $(u_n + \alpha)_{n \in \mathbb{N}}$ soit géométrique de raison q
- soit on utilise la somme téléscopique $\sum_{k=0}^{n-1} \left(v_{k+1} v_k \right)$ avec $v_n = q^{-n} \times u_n$

4) Suite récurrente linéaire homogène d'ordre 2 à coefficients constants

Ce sont les suites $U = (u_n)_{n \in \mathbb{N}} \in S(K)$, pour lesquelles il existe 2 constantes a et b telles que : $\forall n \in \mathbb{N}$, $u_{n+2} = a u_{n+1} + b u_n$ (R)

<u>Propriété</u>: Soit (C): $X^2 = a X + b$ l'équation caractéristique de la relation (R).

- 1) Si (C) possède deux solutions distinctes r et s. Alors il existe deux constantes α et β telles que $\forall n \in \mathbb{N}, \, u_n = \alpha \times r^n + \beta \times s^n$
- 2) Si (C) possède une solution double r. Alors il existe deux constantes α et β telles que $\forall n \in \mathbb{N}, \, u_n = (\alpha + \beta \, n) \times r^n$

<u>Dem:</u> On peut détermine les constantes α et β pour qu'elles vérifient la relation pour n=0 et n=1. Puis on montre l'égalité par récurrence.

5) Suite récurrente

Ce sont les suites $U = (u_n)_{n \in \mathbb{N}} \in S(K)$, pour lesquelles il existe une fonction f et une constante a telles que : $u_0 = a$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$

<u>Propriété</u>: Soit la suite récurrente définies par $\mathbf{u}_0 = \mathbf{a}$ et $\forall \mathbf{n} \in \mathbb{N}$, $\mathbf{u}_{n+1} = \mathbf{f}(\mathbf{u}_n)$. On suppose que $(u_n)_{n \in \mathbb{N}}$ converge vers l et que f est continue en l, alors $\mathbf{f}(l) = l$

Dem: Sera vue dans le chapitre "Fonctions continues"