MPSI 14-15 Feuille nº 09 : Suites numériques Du 07/11/14 au 18/11/14

Exercice 1. Étudier :

a)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2k}}$$
 b) $\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)$ c) $\prod_{k=1}^{n} \left(\frac{2k-1}{2k}\right)$ d) $\sum_{k=1}^{n} \left(\frac{1}{k+n}\right)$ e) $\sum_{k=1}^{n} \left(\frac{n}{k+n^2}\right)$

Exercice 2. Soient $\lambda \in]0,1[$ et $(u_n)_{n\in\mathbb{N}}$ telle que : $0 < u_0 < u_1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + \lambda^n u_n$

- **a)** Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante **b)** Montrer que : $\forall a \in [0,1], 1+a \leqslant e^a$

- c) Etablir: $\forall n \in \mathbb{N}, u_{n+2} \leq u_{n+1} (1 + \lambda^n)$ d) Conclure quant à la nature de $(u_n)_{n \in \mathbb{N}}$

Exercice 3. a) Montrer: $\forall x \in \mathbb{R}, x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x$

b) En déduire la nature de :
$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{n} + \frac{k}{n^2}\right)$$

Exercice 4. Montrer que : si $n \ge 1$, $\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$. Étudier : $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n)$

Exercice 5. Soit les suites de terme général : $u_n = 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$ et $v_n = \frac{u_n}{\sqrt{n}}$. Montrer que : $u_n \leqslant \sqrt{n-1} + \sqrt{n}$. En déduire que la suite $(v_n)_{n \in \mathbb{N}^*}$ est croissante et converge.

Exercice 6. Soit : $v_0 > u_0 > 0$, $u_{n+1} = \sqrt{u_n v_n}$, $v_{n+1} = \frac{u_n + v_n}{2}$. Montrer que $(u_n)_{n \in \mathbb{N}}$ est croissante, $(v_n)_{n\in\mathbb{N}}$ est décroissante et qu'elles ont la même limite l.

Exercice 7. Soit : $(u_n)_{n\in\mathbb{N}}$ une suite d'entiers. Montrer que : $(u_n)_{n\in\mathbb{N}}$ converge ssi elle est stationnaire.

Exercice 8. Soit $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$. Étudier la convergence de ces suites et donner une valeur approchée à 10^{-3} près de leur limite

Exercice 9. Montrer que, pour tout $n \in \mathbb{N}$ l'équation " $x^n = 1 - 2x$ " possède une unique solution positive x_n . Étudier la convergence de la suite $(x_n)_{n\in\mathbb{N}}$.

Exercice 10. Soit $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=-1$ et : $\forall n\in\mathbb{N}, u_{n+1}=\frac{u_n}{3-2u_n}$. En considérant $v_n=\frac{u_{n-1}}{u_n}$, étudier la convergence de $(u_n)_{n\in\mathbb{N}}$

Exercice 11. Soit : $v_0 > u_0 \geqslant 0$, $u_{n+1} = \frac{u_n + v_n}{2}$, $v_{n+1} = \sqrt{u_{n+1}v_n}$. Montrer que les deux suites sont convergentes et ont la même limite l. Expliciter l en posant $u_0 = v_0 \cos(\phi)$

1

Exercice 12. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{2u_n+1}$

Exercice 13. Étudier les suites récurrentes définies par u_0 et les relations de récurrence :

a)
$$u_0 = 1$$
 et $u_{n+1} = \frac{u_n}{1 + u_n^2}$

b)
$$u_0 = 2$$
 et $u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$

c)
$$u_0 = 1$$
 et $u_{n+1} = \frac{1}{u_n + 2}$

d)
$$u_0 = 2$$
 et $u_{n+1} = \frac{1}{2+n}$

e)
$$u_0 > 0$$
 et $u_{n+1} = \sqrt{\frac{u_n^2 + 7u}{2}}$

a)
$$u_0 = 1$$
 et $u_{n+1} = \frac{u_n}{1 + u_n^2}$ b) $u_0 = 2$ et $u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$ c) $u_0 = 1$ et $u_{n+1} = \frac{1}{u_n + 2}$ d) $u_0 = 2$ et $u_{n+1} = \frac{1}{3 + u_n}$ e) $u_0 > 0$ et $u_{n+1} = \sqrt{\frac{u_n^2 + 7u_n}{2}}$ f) $u_0 = \frac{\pi}{4}$ et $u_{n+1} = 1 - \cos(u_n)$

Exercice 14. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.

a)
$$u_n = \sum_{k=0}^{2n+1} \frac{(-1)^k}{(2k)!}$$
 et $v_n = u_n + \frac{1}{(4n+4)!}$

b)
$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$$
 et $v_n = \left(1 + \frac{1}{n}\right) u_n$

c)
$$u_n = \sum_{k=1}^{n-1} \frac{1}{k^2 (k+1)^2}$$
 et $v_n = u_n + \frac{1}{3n^2}$