DEVOIR SURVEILLÉ N° 3 (4 HEURES)

Ce devoir est constitué d'un problème et de quatre exercices. L'ordre des exercices ne correspond à aucun critère de difficulté ou de longueur : vous pouvez les traiter dans l'ordre que vous voulez. Veillez à soigner la copie tant pour l'écriture, la propreté que pour la rédaction, la rigueur et l'argumentation. <u>La calculatrice est autorisée</u>. Vous numéroterez vos copies et ferez apparaître clairement sur la première page le nombre de copies.

Exercice 1 : Équation différentielle du premier ordre

On considère l'équation différentielle : (E) : $(1+x^2)y' + (1-x)^2y = x^3 + x^2 - 3x + 3$

- 1. Montrer que, parmi les courbes intégrales, il y a une et une seule droite.
- 2. Déterminer l'ensemble des solutions de (E).
- 3. Soit $h \in \mathbb{R}$. On note y_h la solution de (E) vérifiant : $y_h(0) = h$. On note (C_h) la courbe représentative de y_h
 - (a) Montrer que (C_h) posséde une asymptote qui ne dépend pas du paramêtre h.
 - (b) Étudier la branche infinie de (C_h) au voisinage de $-\infty$

Exercice 2 : Équations différentielles du second ordre

Résoudre, dans l'ensemble des fonctions à valeurs réelles, les équations différentielles linéaires du second ordre suivantes et pour chacune d'entre elles, on donnera la solution répondant aux conditions initiales : y(0) = 0 et y'(0) = 0

1.
$$y'' + y' - 6y = 25e^{2x} + 6e^{3x}$$

2.
$$y'' - 4y' + 5y = e^{2x} \cos(x)$$

Exercice 3 : Systèmes linéaires

Résoudre les systèmes linéaires suivants, (on discutera du nombre de solution selon les valeurs de m dans le premier cas) :

1.
$$\begin{cases} x + (m+1)y &= m+2\\ mx + (m+4)y &= m^2 + 4 \end{cases}$$

2.
$$\begin{cases} 2x + y + z &= 3\\ 3x - y - 2z &= 0\\ x + y - z &= -2\\ x + 2y + z &= 1 \end{cases}$$

Exercice 4: Sommes simples et sommes doubles

1. Soit
$$n \in \mathbb{N}^*$$
. Calculer $\sum_{1 \leqslant i \leqslant j \leqslant n} (i+2j)$

2. Soit
$$n \in \mathbb{N}^*$$
. Calculer $\sum_{1 \leq i,j \leq n} (i+j)^2$

3. Soit
$$n \in \mathbb{N}^*$$
. On pose $u_n = \sum_{k=0}^{n^3-1} \left\lfloor \sqrt[3]{k} \right\rfloor$ où $\lfloor x \rfloor$ désigne la partie entière du réel x

- (a) Calculer $u_{n+1} u_n$
- (b) En déduire u_n en fonction de n
- 4. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. En utilisant un résultat sur l'interversion du symbole \sum pour une somme indéxée sur un triangle ainsi que la formule du binôme, calculer :

$$\sum_{j=0}^{n} \left[x^{j} \binom{n}{j} \sum_{k=j}^{n} \binom{n-j}{n-k} \right]$$

<u>Problème</u>: Densité de $\{\sqrt{n} - \lfloor \sqrt{n} \rfloor\}$ dans [0,1]

1. Recherche d'un entier n tel que \sqrt{n} ait pour premières décimales : \cdots , $19\cdots$.

On raisonne par analyse-synthèse

(a) Analyse.

Supposons qu'il existe un entier n tel que : $0, 19 \le \sqrt{n} - \lfloor \sqrt{n} \rfloor < 0, 20$ On pose $k = \lfloor \sqrt{n} \rfloor$ et $I_k = \lfloor k^2 + 0, 38 + 0, 0361; k^2 + 0, 4 + 0, 04 \rfloor$ Montrer que : $n \in I_k$

(b) Synthèse.

Soit $p \in \mathbb{N}$. On pose $I_p = [p^2 + 0, 38 \ p + 0, 0361; p^2 + 0, 4 \ p + 0, 04]$

- i. Calculer le diamètre de $I_p\,$ i.e. la plus grande distance entre deux éléments de $\,I_p\,$
- ii. Montrer qu'il existe $N \in \mathbb{N}$ tel que le diamètre de I_N soit plus grand que 1.
- iii. En déduire qu'il existe au moins un entier q tel que $I_q \cap \mathbb{N} \neq \emptyset$
- iv. Soit $n \in I_q \cap \mathbb{N}$. Montrer que $\{\sqrt{n} \lfloor \sqrt{n} \rfloor\} \in [0, 19; 0, 20[$.
- (c) Exemples.
 - i. Déterminer deux valeurs de $n \in \mathbb{N}$ telles que $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [0, 19; 0, 20]$
 - ii. Déterminer une valeur de $n \in \mathbb{N}$ telle que $\sqrt{n} \lfloor \sqrt{n} \rfloor$ et $\sqrt{n+1} \lfloor \sqrt{n+1} \rfloor$ soient tous deux dans [0, 19; 0, 20[.
 - iii. Ecrire un programme Python ou un algorithme en français permettant d'obtenir le plus petit entier n tel que $\sqrt{n} |\sqrt{n}| \in [0, 19; 0, 20[$
- 2. Étude du cas général Soit $(a, b) \in [0, 1]$ avec a < b
 - (a) Montrer qu'il existe $N \in \mathbb{N}$ tel que le diamètre de $\left[\left(N+a\right)^2;\left(N+b\right)^2\right[$ soit supérieur à 1.
 - (b) Montrer que, pour cet entier N, $\lceil (N+a)^2 \rceil (N+b)^2 \lceil \bigcap \mathbb{N} \neq \emptyset$
 - (c) Soit $n \in [(N+a)^2; (N+b)^2] \cap \mathbb{N}$. Montrer que $: \sqrt{n} \lfloor \sqrt{n} \rfloor \in [a; b]$
 - (d) Soit $p \in \mathbb{N}^*$. Montrer que : $\exists n \in \mathbb{N} \mid \forall i \in \llbracket 0, p-1 \rrbracket$, $\sqrt{n+i} \lfloor \sqrt{n+i} \rfloor \in [a; b[$
 - (e) Ecrire un programme Python ou un algorithme en français permettant d'obtenir le plus petit entier n tel que $\sqrt{n} |\sqrt{n}| \in [a; b[$
 - (f) Question subsidiaire En traduisant le programme précédent sur votre calculatrice, déterminer le plus petit entier n tel que $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [0, 80; 0, 81[$

CORRECTION

Exercice 1: Équation différentielle (E): $(1+x^2)y'+(1-x)^2y=x^3+x^2-3x+3$

1. On cherche une solution sous la forme : $y_0: x \to ax + b$ où a et b sont des réels à déterminer. y_0 est dérivable et on a : $\forall x \in \mathbb{R}, y_0'(x) = a$. Donc : y_0 solution de $(E) \iff \forall x \in \mathbb{R}, a(1+x^2) + (ax+b) \times (1-x)^2 = x^3 + x^2 - 3x + 3$

$$\iff \forall x \in \mathbb{R}, ax^3 + a(1+x^2) + (ax+b) \times (1-x)^2 = x^3 + x^2 - 3x + 3$$

$$\iff \begin{cases} a = 1 \\ b - a = 1 \\ a - 2b = -3 \\ a + b = 3 \end{cases} \text{ (par identification)} \iff \begin{cases} a = 1 \\ b = 2 \end{cases}$$

Donc on a une et une seule droite qui est courbe intégrale de cette équation différentielle : il s'agit la droite d'équation Y = X + 2.

- 2. Soit $(H): (1+x^2)y' + (1-x)^2y = 0$ l'équation homogène associée à (E). Puisque: $\forall x \in \mathbb{R}, -\frac{(x-1)^2}{x^2+1} = \frac{2x}{x^2+1} - 1$, une primitive de la fonction $x \longrightarrow -\frac{(x-1)^2}{x^2+1}$ est la fonction $x \longrightarrow \ln(1+x^2) - x$. Ainsi les solutions de (H) sont les fonctions $g_{\lambda}: x \longrightarrow \lambda(1+x^2)e^{-x}$ Connaissant la structure de l'ensemble des solutions de (E), on en déduit que l'ensemble des solutions de (E) est | l'ensemble des fonctions $f_{\lambda}: x \longrightarrow x + 2 + \lambda (1 + x^2) e^{-x}$ où $\lambda \in \mathbb{R}$
- 3. Parmi les courbes intégrales de (E) celle passant par le point de coordonnées (0,h) est la courbe (C_h) de la fonction $y_h: x \longrightarrow x + 2 + (h-2)(1+x^2)e^{-x}$
 - (a) On a clairement $\lim_{x\to +\infty} y_h(x) = +\infty$ et $\lim_{x\to +\infty} (y_h(x) x 2) = 0$ donc la droite d'équation Y = X + 2 est asymptote à la courbe (C_h)
 - (b) En $-\infty$, (C_h) possède | une asymptote si h=2 (la droite d'équation Y=X+2), ou une branche parabolique d'axe (Oy) si $h \neq 2$

Exercice 2 : Équations différentielles du second ordre

- 1. (E_1) : $y'' + y' 6y = 25e^{2x} + 6e^{3x}$ Les solutions de (E_1) sont les fonctions de la forme $x \longrightarrow 5 x e^{2x} + e^{3x} + A e^{2x} + B e^{-3x}$ Parmi celles-ci, celle qui vérifie le problème de Cauchy est $x \longrightarrow (5 x - \frac{11}{5}) e^{2x} + e^{3x} + \frac{6}{5} e^{-3x}$
- 2. (E_2) : $y'' 4y' + 5y = e^{2x} \cos(x)$ Les solutions de (E_2) sont les fonctions de la forme $x \longrightarrow \frac{1}{2} x \sin(x) e^{2x} + A \sin(x) e^{2x} + B \cos(x) e^{2x}$ Parmi celles-ci, celle qui vérifie le problème de Cauchy est $x \longrightarrow \frac{1}{2} x \sin(x) e^{2x}$

Exercice 3 : Systèmes linéaires

1. (S)
$$\begin{cases} x + (m+1)y &= m+2 \\ mx + (m+4)y &= m^2 + 4 \end{cases} \iff \begin{cases} x + (m+1)y &= m+2 \\ (4-m^2)y &= 4-2m \end{cases}$$

1. (S)
$$\begin{cases} x + (m+1)y = m+2 \\ mx + (m+4)y = m^2 + 4 \end{cases} \iff \begin{cases} x + (m+1)y = m+2 \\ (4-m^2)y = 4-2m \end{cases}$$

$$\stackrel{\text{Si } m = 2}{} \text{Alors } (S) \iff \begin{cases} x + 3y = 4 \\ 0y = 0 \end{cases} \iff x + 3y = 4 \text{ . Donc l'ensemble des solutions de}$$

(S) est la droite d'équation x + 3y =

Si
$$m = -2$$
 Alors $(S) \iff \begin{cases} x - y = 0 \\ 0y = 8 \end{cases}$. Donc (S) n'a pas de solution

Si
$$m^2 \neq 4$$
 Alors $(S) \iff \begin{cases} x + (m+1)y = m+2 \\ (4-m^2)y = 4-2m \end{cases} \iff \begin{cases} x = \frac{m^2+2m+2}{m+2} \\ y = \frac{2}{m+2} \end{cases}$
Dong (S) a ung at une scale solution: le couple $\binom{m^2+2m+2}{m+2} = \binom{m^2+2m+2}{m+2}$

Donc (S) a une et une seule solution : le couple $(\frac{m^2+2m+2}{m+2},$

2. (S)
$$\begin{cases} 2x + y + z = 3 \\ 3x - y - 2z = 0 \\ x + y - z = -2 \end{cases} \iff \begin{cases} x + y - z = -2 \\ y + 2z = 3 \\ -y + 3z = 7 \\ -4y + z = 6 \end{cases} \iff \begin{cases} x + y - z = -2 \\ y + 2z = 3 \\ 5z = 10 \\ 9z = 18 \end{cases}$$

$$D'où(S) \iff \begin{cases} x + y - z = -2 \\ y + 2z = 3 \\ -4y + z = 6 \end{cases} \iff \begin{cases} x = 1 \\ y = -1 \\ z = 2 \end{cases}$$

Exercice 4 : Sommes simples et sommes doubles

1.
$$S_1 = \sum_{1 \le i \le j \le n} (i+2j) = \sum_{j=1}^n \left(\sum_{i=1}^j (i+2j)\right) = \sum_{j=1}^n \left(\frac{j(j+1)}{2} + 2j^2\right) = \frac{5}{2} \sum_{j=1}^n j^2 + \frac{1}{2} \sum_{j=1}^n j^2$$

$$Donc S_1 = \frac{5}{2} \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \frac{n(n+1)}{2} donc \left[\sum_{1 \le i \le j \le n} (i+2j) = \frac{n(n+1)(5n+4)}{6}\right]$$

2.
$$S_2 = \sum_{1 \le i,j \le n} (i+j)^2 = \sum_{j=1}^n \left(\sum_{i=1}^n (i^2 + 2ij + j^2) \right) = \sum_{j=1}^n \left(\frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2}j + nj^2 \right)$$

Donc $S_2 = n\frac{n(n+1)(2n+1)}{6} + 2\left(\frac{n(n+1)}{2}\right)^2 + n\frac{n(n+1)(2n+1)}{6}$ donc $\left[\sum_{1 \le i,j \le n} (i+j)^2 = \frac{n^2(n+1)(7n+5)}{6} \right]$

$$3. u_n = \sum_{k=0}^{n^3 - 1} \left\lfloor \sqrt[3]{k} \right\rfloor$$

(a)
$$u_{n+1} - u_n = \sum_{k=n^3}^{(n+1)^3 - 1} \left\lfloor \sqrt[3]{k} \right\rfloor = \sum_{k=n^3}^{(n+1)^3 - 1} n \quad \text{donc} \left[\frac{u_{n+1} - u_n = 3n^3 + 3n^2 + n}{2n^3 + 3n^2 + n} \right]$$

(b)
$$u_n = u_1 + \sum_{j=1}^{n-1} (u_{j+1} - u_j) = \sum_{j=1}^{n-1} (3j^3 + 3j^2 + j) \operatorname{car} u_1 = 0. \text{ D'où}:$$

$$u_n = 3\frac{n^2(n-1)^2}{4} + 3\frac{n(n-1)(2n-1)}{6} + \frac{n(n-1)}{2} \operatorname{soit} \left[\sum_{k=0}^{n^3-1} \left\lfloor \sqrt[3]{k} \right\rfloor = \frac{n^2(n-1)(3n+1)}{4} \right]$$

4.
$$S_{3} = \sum_{j=0}^{n} \left[x^{j} \binom{n}{j} \sum_{k=j}^{n} \binom{n-j}{n-k} \right] = \sum_{j=0}^{n} \sum_{k=j}^{n} \left[x^{j} \binom{n}{j} \binom{n-j}{n-k} \right]$$

$$\operatorname{Or} \binom{n}{j} \binom{n-j}{n-k} = \frac{n!}{j!(n-j)!} \times \frac{(n-j)!}{(k-j)!(n-k)!} = \frac{n!}{k!(n-k)!} \times \frac{k!}{(k-j)!j!} = \binom{n}{k} \binom{k}{j} \text{ Ainsi } :$$

$$S_{3} = \sum_{j=0}^{n} \sum_{k=j}^{n} \left[x^{j} \binom{n}{k} \binom{k}{j} \right] = \sum_{k=0}^{n} \sum_{j=0}^{k} \left[x^{j} \binom{n}{k} \binom{k}{j} \right] = \sum_{k=0}^{n} \binom{n}{k} (1+x)^{k}$$

$$\operatorname{Ainsi} \left[\sum_{j=0}^{n} \left[x^{j} \binom{n}{j} \sum_{k=j}^{n} \binom{n-j}{n-k} \right] = (2+x)^{n} \right]$$

Problème : Densité de $\{\sqrt{n} - |\sqrt{n}|\}$ dans [0,1]

- 1. Recherche d'un entier n tel que \sqrt{n} ait pour premières décimales : \cdots , $19\cdots$. On raisonne par analyse-synthèse
 - (a) Analyse.

```
Supposons qu'il existe un entier n tel que : 0, 19 \le \sqrt{n} - \lfloor \sqrt{n} \rfloor < 0, 20
On pose k = \lfloor \sqrt{n} \rfloor et I_k = [k^2 + 0, 38 \ k + 0, 0361; k^2 + 0, 4 \ k + 0, 04]
On a : 0, 19 + k \le \sqrt{n} < 0, 20 + k donc k^2 + 0, 38 \ k + 0, 0361 \le n < k^2 + 0, 4 \ k + 0, 04 i.e n \in I_k
```

(b) Synthèse.

Soit $p \in \mathbb{N}$. On pose $I_p = [p^2 + 0, 38 \ p + 0, 0361; p^2 + 0, 4 \ p + 0, 04]$

- i. Le diamètre de I_p est 0.02 p + 0,0039
- ii. Lorsque p tend vers $+\infty$, ce diamètre tend vers $+\infty$. Ainsi il existe $N \in \mathbb{N}$ tel que le diamètre de I_N soit plus grand que 1. Il suffit de prendre N = 50
- iii. Soit q=50. Puisque le diamètre de I_q est strictement supérieur à 1, l'intervalle I_q contient au moins un entier : $I_q \cap \mathbb{N} \neq \emptyset$
- iv. Soit $n \in I_q \cap \mathbb{N}$. On a n entier et $q^2 + 0, 38q + 0, 0361 \leqslant n < q^2 + 0, 4q + 0, 04$ d'où $q \leqslant q + 0, 19 \leqslant \sqrt{n} < q + 0, 2 < q + 1$ avec q entier. Ainsi la partie entière de \sqrt{n} est q et on trouve bien : $0, 19 \leqslant \sqrt{n} \lfloor \sqrt{n} \rfloor < 0, 20$ i.e. $\boxed{\sqrt{n} \lfloor \sqrt{n} \rfloor} \in [0, 19; 0, 20[]$.
- (c) Exemples.
 - i. Avec $q \ge 50$, en prenant un entier dans I_q , cet entier vérifie l'encadrement voulu. Pour q = 50, $I_q = [2519, 0361; 2520, 04[$ donc si on prend $\boxed{n = 2520}$, on a bien $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [0, 19; 0, 20[$ Pour q = 51, $I_q = [2620, 4161; 2621, 44[$ donc si on prend $\boxed{n = 2621}$, on a bien $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [0, 19; 0, 20[$
 - ii. Pour avoir deux entiers consécutifs vérifiant l'encadrement, il suffit de trouver deux entiers consécutifs dans un intervalle I_q . On sera assuré d'une telle existence dès que le diamètre de I_q est strictement supérieur à 2. Cela est le cas pour q=100 par exemple. Comme $I_{100}=[10038,0361;10040,04[$, les deux entiers 10039 et 10040 sont bien consécutifs et vérifient $\sqrt{n}-|\sqrt{n}|\in[0,19;0,20[$
 - iii. Programme Python cherchant le plus petit entier n tel que $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [0, 19; 0, 20[$

On trouve n = 27

- 2. Étude du cas général Soit $(a, b) \in [0, 1]$ avec a < b
 - (a) Le diamètre de $I_N = \left[(N+a)^2; (N+b)^2 \right]$ est $\delta = (b-a)(2N+a+b)$. Donc en prenant, par exemple, $N = \left\lfloor \frac{1}{2(b-a)} \right\rfloor + 1$, on aura bien que

le diamètre de $\left[\left(N+a\right)^2;\left(N+b\right)^2\right[$ est supérieur à 1

- (b) Pour une telle valeur de N, le diamètre de I_N étant strictement supérieur à 1, il existe au moins un entier relatif dans cet intervalle I_N . Or la borne inférieure de I_N est positive donc l'entier trouvé l'est aussi : $[(N+a)^2; (N+b)^2] \cap \mathbb{N} \neq \emptyset$
- (c) Soit $n \in [(N+a)^2; (N+b)^2] \cap \mathbb{N}$. On a : $N \leq N+a \leq \sqrt{n} < N+b \leq N+1$ avec N entier. Donc N est la partie entière de \sqrt{n} et donc : $\sqrt{n} \lfloor \sqrt{n} \rfloor \in [a;b]$
- (d) Soit $p \in \mathbb{N}^*$. On choisit cette fois N tel que le le diamètre de I_N soit strictement supérieur à p. Il existe alors p entiers naturels consécutifs dans I_N . On note n le plus petit d'entre eux. Puisque $n, n+1, \ldots, n+p-1$ sont dans $\left[(N+a)^2; (N+b)^2\right] \cap \mathbb{N}$, le calcul de la question précédente permet d'affirmer que :

```
\forall i \in \llbracket 0, p-1 \rrbracket, \sqrt{n+i} - \left\lfloor \sqrt{n+i} \right\rfloor \in [a; b[
```

(e) Programme Python cherchant le plus petit entier n tel que $\sqrt{n} - |\sqrt{n}| \in [a; b]$

(f) Question subsidiaire En appelant la fonction précédente :

```
>>> partiefrac(0.8, 0.81)
```

On obtient que n = 164 est le plus petit entier n tel que $\sqrt{n} - |\sqrt{n}| \in [0, 80; 0, 81]$