MPSI 14-15 Feuille no 11: Fonctions continues Du 27/11/14 au 05/12/14

Exercice 1. Soit f une application continue bijective de $[0,1] \rightarrow [0,1]$. Montrer que $\{f(0), f(1)\} = \{0,1\}$

Exercice 2. Montrer qu'une fonction f continue sur \mathbb{R} et périodique est bornée et atteint ses bornes

Exercice 3. Soit f de [a, b] o [a, b] vérifiant : $\forall (x, y) \in [a, b]^2$, $x \neq y \Longrightarrow |f(x) - f(y)| < |x - y|$. Montrer que f est continue et que possède un unique point fixe. Peut-on remplacer [a, b] par [a, b]?

Exercice 4. Soit f une fonction continue de [a,b] vers \mathbb{R} . Pour x dans [a,b], on note $M(x) = \sup_{a \le x \le b} f(x)$. Montrer que la fonction M est croissante et continue sur [a,b].

Exercice 5. Soit f une application continue de $[0,1] \to [0,1]$. Montrer que : $\exists x \in [0,1] \mid f(x) = x$. Que dire si on remplace l'intervalle [0,1] par [0,1]?

Exercice 6. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application telle que : $\lim_{x \to +\infty} f(x) = l$ où $l \in]0,1[$. Calculer $\lim_{n \to +\infty} (f(n))^n$

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application continue telle que : $\forall (a,y) \in \mathbb{R}^2, 2 f(x+y) = f(2x) + f(2y)$. On pose g(x) = f(x) = f(0). Montrer que g est impaire, puis que : $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, g(nx) = n g(x)$, puis que : $\forall r \in \mathbb{Q}, g(r) = r g(1)$. En déduire que : $\forall x \in \mathbb{R}, g(x) = x g(1)$. Conclure.

Exercice 8. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application continue telle que : $\forall (a,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y). Montrer que f est impaire, puis que : $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, f(nx) = n f(x)$, puis que : $\forall r \in \mathbb{Q}, f(r) = r f(1)$. Calculer f(x) pour $x \in \mathbb{R} \setminus \mathbb{Q}$.

Exercice 9. Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue. Soit a > 0.

- 1. Soit a > 0. Pour $n \in \mathbb{N}$, on pose $x_n = a^{\left(\frac{1}{2^n}\right)}$. Calculer $\lim_{n \to +\infty} f(x_n)$
- 2. On suppose que : $\forall x \in \mathbb{R}^+, f(x) = f(x^2)$. Montrer en utilisant le 1) que f est constante.
- 3. Soit $\lambda \in]-1,1[$. On suppose que : $\forall x \in \mathbb{R}^+, f(x^2) = \lambda f(x)$. Montrer que la fonction f est nulle.

Exercice 10. Déterminer les fonctions f définies sur \mathbb{R} , continues en 0 et telles que : $\forall x \in \mathbb{R}, f(3x) = f(x)$

- **Exercice 11.** 1. Montrer que la fonction indicatrice (ou caractéristique) de \mathbb{Q} n'est continue en aucun point de \mathbb{R}
 - 2. Etudier la continuité de $f: x \longrightarrow \lfloor x \rfloor + \lfloor \frac{1-x}{2} \rfloor$. (on pourra commencer par représenter f)

Exercice 12. Soit $f:]a, b[\longleftarrow \mathbb{R}$ continue, strictement croissante. Montrer que f(]a, b[) est un intervalle ouvert.

Exercice 13. Soit $f: I \longrightarrow \mathbb{R}$ continue telle que : $\forall x \in I$, |f(x)| < 1. Etudier, pour I =]0, 2[puis pour I = [0, 2], la véracité des assertions : **a**) $\forall x \in I, \exists k \in]0, 1[|f(x)| < k$ **b**) $\exists k \in]0, 1[|\forall x \in I, f(x)| < k$

Exercice 14. Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue telle que : $[a,b] \subset f([a,b])$. Montrer que : $\exists x \in [a,b] \mid f(x) = x$. Ce résultat est-il toujours vrai si on remplace [a,b] par]a,b[?

Exercice 15. Soient I un intervalle de \mathbb{R} et $f:I\longleftarrow\mathbb{R}$ une application continue. Montrer que si f(I) est un ensemble fini alors f est constante.

Exercice 16. 1. Soit f continue de $[0,1] \to [0,1]$. Montrer que : $\forall n \in \mathbb{N}^*, \exists a_n \in [0,1] \mid f(a_n) = (a_n)^n$.

2. Si de plus f est strictement décroissante, montrer que : $\forall n \in \mathbb{N}^*, \ a_n$ est unique. Etudier $(a_n)_{n \in \mathbb{N}^*}$

Exercise 17. Soit
$$(f,g) \in (\mathscr{C}^0([0,1]), \mathbb{R})^2 \mid (f(0) - g(0)) \times (f(1) - g(1)) \leq 0$$
. Montrer que : $\exists x_0 \in [0,1] \mid f(x_0) = g(x_0)$.

Exercice 18. Soit I un intervalle de \mathbb{R} . Soient f et g deux applications continues de I vers \mathbb{R} telles que f ne s'annule pas et |f| = |g|. Montrer que : f = g ou f = -g

Exercice 19. Montrer qu'il n'existe pas de bijection continue de [0,1] vers \mathbb{R} .

Exercice 20. Etudier la continuité de la fonction : $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$.

Exercice 21. Soit $f \in (\mathscr{C}^0(\mathbb{R}, \mathbb{R}))$ admettant $+\infty$ pour limite en $+\infty$ et en $-\infty$. Montrer que : $\exists x_0 \in \mathbb{R} \mid \forall x \in \mathbb{R}, f(x) \geqslant f(x_0)$