ESPACES VECTORIELS & APPLICATIONS LINEAIRES

Soit $K = \mathbb{R}$ ou \mathbb{C}

A) ESPACES VECTORIELS

I) Espaces vectoriels

Soit E un ensemble non vide. On le munit d'une loi interne + et d'une loi externe notée · de K×E sur E.

<u>Définition</u>: On dit que $(E,+,\cdot)$ est un **espace vectoriel sur K**, ou K-espace vectoriel, sssi:

- (E,+) est un groupe commutatif.

 $\forall (\lambda, \Gamma) \in K^2, \ \forall (X, Y) \in E^2, \ \text{on a}: \qquad \bullet \quad (\lambda + \Gamma) \cdot X = \lambda \cdot X + \ \Gamma \cdot X$

 $\bullet \quad \lambda \cdot (X+Y) = \lambda \cdot X + \lambda \cdot Y$

• $\lambda \cdot (\Gamma \cdot X) = (\lambda \Gamma) \cdot X$

 $\bullet \quad 1_{K} \cdot X = X$

Remarque : Les éléments de E s'appellent les vecteurs, ceux de K les scalaires.

Exemples: \mathbb{C} , \mathbb{R}^2 sont des \mathbb{R} -espaces vectoriels. K[X] et $K_n[X]$ sont des K-espaces vectoriels

<u>Propriétés</u>: $\forall (\lambda, X) \in K \times E$, $\lambda \cdot 0_E = 0_E$, $0_K \cdot X = 0_E$, $(-\lambda) \cdot X = -(\lambda \cdot X) = \lambda \cdot (-X)$

```
\begin{array}{lll} \underline{\textbf{Dem}} \colon & \lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E \ . & \text{Donc } \lambda \cdot 0_E = 0_E \\ 0_K \cdot X = (0_K + 0_K) \cdot X = 0_K \cdot X + 0_K \cdot X \ . & \text{Donc } 0_K \cdot X = 0_E \\ (-\lambda) \cdot X + \lambda \cdot X = (-\lambda + \lambda) \cdot X = 0_E \ . & \text{Donc } (-\lambda) \cdot X = -(\lambda \cdot X) \\ \lambda \cdot (-X) + \lambda \cdot X = \lambda \cdot (-X + X) = 0_E \ . & \text{Donc } \lambda \cdot (-X) = -(\lambda \cdot X) \end{array}
```

Espace produit de deux espaces vectoriels

Soient E et F deux espaces vectoriels sur K.

On munit E×F des lois + et · définies par: (x,y)+(z,t)=(x+z,y+t) et $\lambda \cdot (x,y)=(\lambda \cdot x, \lambda \cdot y)$

Théorème : (E×F, +, ·) est un K-espace vectoriel

Espace produit d'un nombre fini d'espaces vectoriels

Soient E_1, E_2, \ldots et E_n n espaces vectoriels sur K. On munit $E_1 \times E_2 \times \ldots \times E_n$ des lois + et \cdot définies par: $(x_i)_{1 \leq i \leq n} + (y_i)_{1 \leq i \leq n} = (x_i + y_i)_{1 \leq i \leq n}$ et $\lambda \cdot (x_i)_{1 \leq i \leq n} = (\lambda \cdot x_i)_{1 \leq i \leq n}$

<u>Théorème</u>: $(E_1 \times E_2 \times ... \times E_n, +, .)$ est un K-espace vectoriel

Dem: On raisonne par récurrence

Espace des applications à valeurs dans un espace vectoriel

Soient E un K-espace vectoriel et X un ensemble quelconque. On note $\mathscr{F}(X,E)$ ou E^X l'ensemble des applications de X vers E. pour f et g deux applications de X vers E et λ un scalaire, on note

f + g l'application de X vers E qui à t associe f(t) + g(t) et λf l'application de X vers E qui à t associe $\lambda f(t)$

Théorème : $(\mathcal{F}(X,E), +, .)$ est un K-espace vectoriel

Dem: On vérifie aisément les huit axiomes, l'élément neutre étant l'application $t \to 0_E$

Exemple : L'ensemble K^N des suites d'éléments de K est un K-espace vectoriel

Combinaisons linéaires

Soient $x_1, x_2, ..., x_p$ p vecteurs de E un espace vectoriel sur K.

<u>Définition</u>: Une **combinaison linéaire** de $(x_1, x_2, ..., x_p)$ est un vecteur x de E tel qu'il existe p scalaires $(\lambda_1, \lambda_2, ..., \lambda_p) \in K^p$ avec $x = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + ... + \lambda_p \cdot x_p$ On peut généraliser cette notion à une famille infinie de vecteurs : **<u>Définition</u>**: Soit I un ensemble fini ou infini. Soit $(\lambda_i)_{i \in I}$ une famille de scalaires. On dit que $(\lambda_i)_{i \in I}$ est une famille presque nulle (ou à support fini) si l'ensemble des $i \in I$ tel que $\lambda_i \neq 0$ est fini.

$$x = \sum_{i \in I} \lambda_i \cdot x_i \quad \text{p scalaires } (\lambda_1, \, \lambda_2, \, \dots, \, \lambda_p) \in K^p \text{ avec } x = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \dots + \lambda_p \cdot x_p$$

II) Sous - espaces vectoriels

Soit E un espace vectoriel sur K. Soit F une partie de E.

<u>Définition</u>: On dit que **F** est un sous- espace vectoriel de E si et seulement si les restrictions de + et . à F confèrent à F une structure de K-espace vectoriel

Exemple: $\{0_E\}$ est un s.e.v de E. Les droites vectorielles du plan sont des sev de \mathbb{R}^2 , les droites vectorielles de l'espace et les plans vectoriels sont des s.e.v. de \mathbb{R}^3 .

Exemple: $K_n[X]$ est un s.e.v. de K[X]

Propriété : Soit E un K-espace vectoriel. Soit F une partie de E. Alors :

F est un sous espace vectoriel de E ssi $F \neq \emptyset$ et $\forall \lambda \in K$, $\forall (X,Y) \in F^2$, $X+Y \in F$ et $\lambda \cdot X \in F$ ssi $F \neq \emptyset$ et $\forall (\alpha,\beta) \in K$, $\forall (X,Y) \in F^2$, $\alpha X + \beta Y \in F$ alors les restrictions des lois + et · confèrent à F une structure de K-espace vectoriel.

Dem: Immédiat : voyons par exemple la première ←

Soit $X \in F$, alors $(-1_K) \cdot X \in F$ donc $-X \in F$. Donc comme F est non vide et est stable par +, (F,+) est un groupe. $\forall (\lambda,\Gamma) \in K^2$, $\forall (X,Y) \in F^2$, on a bien: $(\lambda+\Gamma) \cdot X = \lambda \cdot X + \Gamma \cdot X$, $\lambda \cdot (X+Y) = \lambda \cdot X + \lambda \cdot Y$, $\lambda \cdot (\Gamma \cdot X) = (\lambda \Gamma) \cdot X$ et $1_K \cdot X = X$ car ces propriétés sont vraies sur E.

Propriété : L'intersection d'une famille de sous-espaces de E est un s-e-v de E

Dem: Immédiat: provient de la caractérisation

Sous-espace vectoriel engendré par une partie de E

 $\underline{Propriét\acute{e}}: Soit\ (F_i)_{i\in I}\ une\ famille\ de\ sous-espaces\ vectoriels\ du\ K-espace\ vectoriel$ E. Soit F l'intersection de tous les F_i . Alors F est un sous-espace vectoriel de E.

<u>Dem</u>: $\neg \forall i \in I, 0_E \in F_i \text{ donc } 0_E \in F$: F est non vide.

- Soient x et y deux éléments de F, et λ et β deux scalaires. On a, comme F_i est un sous-espace vectoriel de E, $\forall i \in I$, $\lambda \cdot x + \beta \cdot y \in F_i$. $\lambda \cdot x + \beta \cdot y \in F$: F stable par + et \cdot .

<u>Définition</u>: Soit P une partie de E. Soit $(F_i)_{i \in I}$ la famille des s-e-v de E contenant P (famille non vide car E est un s-e-v de E contenant P). Soit F l'intersection de tous les F_i . Alors on appelle F le **sous-espace vectoriel de E engendré par P**. On note F = vect(P)

<u>Remarque</u>: vect(P) est le plus petit s.e.v de E contenant P. Tout sev de E contenant P contient vect(P)

<u>Cas particulier</u>: Si $P = \{x_i | i \in I\}$

<u>Théorème</u>: $vect(\{x_i \mid i \in I\})$ est l'ensemble des combinaisons linéaires des $(x_i)_{i \in I}$

<u>Dem</u>: Soit F = vect(P) et G = l'ensemble des combinaisons linéaires de $(x_i)_{i \in I}$

- G est un sous-espace vectoriel de E, car il est stable par + et ·, et contient P. Donc F⊂G.
- $\forall i \in I, P \subseteq F_i$, donc toute combinaison linéaire des vecteurs de P est dans F_i . Donc $\forall i \in I, G \subseteq F_i$. D'où $G \subseteq F$

III) Familles libres, familles génératrices, bases

Soit $\mathcal{F} = (x_i)_{i \in I}$ une famille de vecteurs du K-espace vectoriel E.

<u>Définition</u>: \mathcal{F} est une famille **génératrice** si et seulement si vect (\mathcal{F}) = E

$$\forall x \in E, \exists (\lambda_i)_{i \in I} \in K^I \text{ presque nulle telle que } x = \sum_{i \in I} \lambda_i \cdot x_i$$

 $\underline{\textbf{Remarque}}$: Si P est une partie de E telle que vect(P) = E, on dit que P est une partie génératrice de E.

<u>Définition</u>: \mathcal{F} est une famille **libre** si et seulement si 0_E s'écrit de manière unique comme combinaison linéaire des vecteurs de la famille \mathcal{F} . C'est-à-dire :

$$\forall (\lambda_i)_{_{i\in I}} \in K^I \text{ presque nulle, } 0_E = \sum_{i\in I} \lambda_i^{} \text{ . } x_i^{} \text{ ssi } \forall i \in I, \text{ } \lambda_i^{} = 0_K$$

Définition: F est une famille liée si et seulement si elle n'est pas libre

Définition: F est une base si et seulement si elle est libre et génératrice

Propriétés

<u>Théorème</u>: Soit \mathcal{F} une famille génératrice de E. Soit \mathcal{G} une sur-famille de \mathcal{F} . Alors \mathcal{G} est une famille génératrice de E.

 $\underline{\textbf{Dem}} \text{: a) On \'ecrit } \mathscr{F} = (x_i)_{i \in I} \text{ et, quitte \`a r\'eordonner les \'el\'ements de la sur-famille, } \mathscr{G} = (x_i)_{i \in I} \text{ avec } I \subset J.$

$$\text{Soit } x \in E. \quad \mathfrak{F} \ \text{ génératrice de } E \ \text{donc} \ \ (\lambda_i)_{i \in I} \in K^I \ \text{presque nulle } \ \big| \ x = \sum_{i \in I} \lambda_i \ . \ x_i \ . \ \text{On pose, pour } j \in J \setminus I, \ \lambda_j = 0_K.$$

On a bien
$$x = \sum_{i \in I} \lambda_j \cdot x_j$$
 . Donc ${\mathfrak G}$ est génératrice de E

b) (autre dem). $\text{vect}(\mathcal{G})$ est le plus petit sev de E contenant \mathcal{G} . Mais \mathcal{G} contient \mathcal{F} qui est génératrice, donc $\text{vect}(\mathcal{G}) = \text{E}$

Propriétés: (i) La famille constituée d'un vecteur non nul est libre.

- (ii) Une famille contenant le vecteur nul est liée.
- (iii) Une sous-famille d'une famille libre est libre.
- (iv) Une sur-famille d'une famille liée est liée.
- (v) Les vecteurs d'une famille libre sont 2 à 2 distincts

<u>Dem</u>: (i) Si $\lambda \neq 0_K$ on a $\lambda x = 0_E \Rightarrow x = \frac{1}{\lambda} 0_E = 0_E$ (ii) On prend pour coefficient de 0_E , $\lambda = 1_K$

(iii) Si
$$0_E = \sum_{i \in I} \lambda_i x_i$$
 avec $(\lambda_i)_{i \in I} \in K^I$ presque nulle mais non nulle, alors $0_E = \sum_{i \in I} \lambda_j x_j$ avec les $\lambda_j = 0_K$ pour $j \in J \setminus I$

(iv) Contraposée de (iii) (v) Si $x_i = x_j$ alors ($x_i = x_j$) est une sous-famille liée de \mathcal{F} . Donc \mathcal{F} est liée.

Bases

<u>Théorème</u>: Soit E un K-e-v. \mathcal{F} est une base de E si et seulement si tout vecteur de E a une unique décomposition sous forme de combinaison linéaire des vecteurs de \mathcal{F} .

<u>Dem</u>: On écrit $\mathcal{F} = (x_i)_{i \in I}$

a) On suppose que \mathscr{F} est une base. Comme elle est génératrice tout vecteur s'écrit sous la forme $x = \sum_{i \in I} \lambda_i x_i$ avec (λ_i)

 $_{i \in I} \in K^{I}$ presque nulle. Supposons qu'il y ait un $x \in E$ tel qu'on ait deux écritures $x = \sum_{i \in I} \lambda_{i} x_{i} = \sum_{i \in I} \beta_{i} x_{i}$.

On a alors
$$0_E = \sum_{i \in I} \left(\beta_i - \lambda_i \right) \, x_i$$
. Or $\, \mathfrak{F} \,$ est libre donc $\, \forall i \in I \,$, $\, \lambda_i = \beta_i \,$.

b) On suppose que tout vecteur s'écrit de manière unique comme combinaison linéaire des vecteurs de \mathcal{F} . Tout vecteur s'écrivant comme combinaison linéaire de ces vecteurs, \mathcal{F} est génératrice. Le vecteur nul s'écrit de manière unique comme combinaison linéaire de ces vecteurs, donc \mathcal{F} est libre. Donc c'est une base.

Coordonnées

 $Soit \ \ \mathfrak{B}=(x_i)_{i\in I} \ \ une \ base \ de \ E. \ Soit \ x\in E. \ \exists \ ! \ (\lambda_i)_{\ i\in I}\in K^I \ presque \ nulle \ \ \middle| \ x=\sum_{i\in I}\lambda_i \ x_i \ . \ .$

<u>Définition</u>: λ_i est la **composante** (ou **coordonnée**) de x selon x_i dans la base ...

Exemple: Pour Kⁿ. On pose
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$

Ces vecteurs forment une base de K^n que l'on appelle **base canonique** de K^n .

Exemple: Pour $K_n[X]$, $(I, X, ..., X^n)$ est une base que l'on appelle **base canonique** de $K_n[X]$

Exemple: Pour K[X], $(I, X, X^2, ..., X^n, X^{n+1},)$ est une base que l'on appelle **base**

canonique de K[X]

IV) Somme d'un nombre fini de sous-espaces vectoriels

Somme de deux sous-espaces

Soit E un espace vectoriel sur K. Soient F et G deux sous-espaces vectoriels de E.

<u>Définition</u>: On appelle **somme de F et de G**, et on note F+G, l'ensemble :

$$F+G = \{x \in E \mid \exists (y,z) \in F \times G ; x = y+z\}$$

Propriété: F + G est un s-e-v. de E

<u>Dem</u>: * Par définition, F + G est une partie de E.

* F et G étant non vide, c'est aussi le cas de F + G

* Soit $(x, x') \in (F+G)^2$ et $(\alpha, \beta) \in K^2$. $\exists (y,z,y',z') \in F \times G \times F \times G \mid x=y+z \text{ et } x'=y'+z'.$ On a :

 $\alpha x + \beta x' = (\alpha y + \beta y') + (\alpha z + \beta z') \in F + G$

Ainsi, par caractérisation des s.e.v., F + G est un s.e.v. de E

Somme directe de deux sous-espaces

Soit E un espace vectoriel sur K. Soient F et G deux sous-espaces vectoriels de E.

<u>Définition</u>: On dit que la somme de F et G est directe si la décomposition de tout

vecteur de F + G comme somme d'un élément de F et d'un élément de G est unique.

On note alors la somme F + G sous la forme $F \oplus G$

Caractérisation d'une somme directe de deux sous-espaces

Théorème: Soit E un K-e-v. Soient F et G deux s-e-v de E. Soit H = F+G.

H est somme directe \Leftrightarrow F \cap G = {0_E}

<u>Dem</u>: (\Rightarrow) Soit $x \in F \cap G$. On a: $x = x + 0_E = 0_E + x \in F + G$. Or la somme est directe donc $x = 0_E$.

Donc $F \cap G \subset \{0_E\}$. Or, par ailleurs, on a $0_E \in F \cap G$, donc $F \cap G = \{0_E\}$

(⇐) Si $F \cap G = \{0_E\}$. Soit $x \in F + G$. Supposons que x s'écrive de deux manières comme combinaison

linéaire de vecteurs de F et G. \exists $(y,y',z,z') \in F \times F \times G \times G \mid x = y+z = y'+z'$.

On a alors y-y'=z'-z. Or $y-y'\in F$ et $z'-z\in G$. Donc $y-y'\in F\cap G$ et donc $y-y'=z'-z=0_E$.

D'où l'unicité de la combinaison linéaire donnant x comme somme d'un vecteur de F et d'un vecteur de G.

Sous espaces supplémentaires

Soit E un espace vectoriel sur K. Soient F et G deux sous-espaces vectoriels de E.

<u>Définition</u>: On dit que **F et G sont supplémentaires dans E** si E est la somme directe de F et de G, i.e. $E = F \oplus G$

<u>Remarque</u>: Si $E = F \oplus G$, alors tout vecteur de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G: $\forall x \in E, \exists ! (y,z) \in F \times G \mid x = y + z$

Caractérisation des sous espaces supplémentaires

Corollaire: Caractérisation des sous-espaces supplémentaires.

$$E = F \oplus G \iff E = F + G \text{ et } F \cap G = \{0_E\} \iff \forall x \in E, \exists ! (y,z) \in F \times G \mid x = y + z.$$

Dem: Provient de la caractérisation d'une somme directe.

Somme d'un nombre fini de sous-espaces

Soit E un espace vectoriel sur K. Soient $F_1, F_2, ..., F_n$ n sous-espaces vectoriels de E. <u>Définition</u>: On appelle somme de $F_1, F_2, ..., F_n$, et on note $F_1 + F_2 + ... + F_n$,

l'ensemble :
$$F_1 + F_2 + ... + F_n = \{x \in E \mid \exists (y_1, y_2, ..., y_n) \in F_1 \times F_2 \times ... \times F_n \mid x = \sum_{i=1}^n y_i \}$$

Propriété: $F_1 + F_2 + ... + F_n$ est un s-e-v. de E

<u>Dem</u>: On procède par récurrence sur n ...

Somme directe d'un nombre fini de sous-espaces

Soit E un espace vectoriel sur K. Soient $F_1, F_2, ..., F_n$ n sous-espaces vectoriels de E. <u>Définition</u>: On dit que la somme de $F_1, F_2, ..., F_n$ est directe si la décomposition de

tout vecteur de $F_1 + F_2 + ... + F_n$ sous la forme $\sum_{i=1}^n y_i$ avec $y_i \in F_i$ est unique.

On note alors la somme $F_1 + ... + F_n$ sous la forme $F_1 \oplus F_2 \oplus ... \oplus F_n$ ou $\bigoplus_{i=1}^n F_i$

Caractérisation d'une somme directe

<u>Théorème</u>: Soit E un K-e-v. Soient F₁, F₂, ..., F_n n s-e-v de E.

 $F_1+F_2+\ldots+F_n$ est une somme directe ssi la décomposition du vecteur nul comme somme d'éléments des F_k est unique i.e.

$$\forall (y_1, y_2, ..., y_n) \in F_1 \times F_2 \times ... \times F_n, 0_E = \sum_{i=1}^n y_i \iff \forall i \in [\![1, n]\!] \ y_i = 0_E$$

<u>Dem</u>: (\Rightarrow) Si la somme est directe, la décomoosition de 0_E est unique.

$$(\Leftarrow) \ Soit \ x \in F_1 + F_2 + \ldots + F_n \ \ . \ On \ suppose \ \exists \ (y_1, \ldots, y_n) \in F_1 \times \ldots \times F_n \ \ et \ \ \exists \ (z_1, \ \ldots, \ z_n) \in F_1 \times \ldots \times F_n \ \ tels$$

$$\begin{aligned} \text{que } x &= \sum_{i \,=\, 1}^n y_i = \sum_{i \,=\, 1}^n z_i \text{ . En effectuant la différence, on } a: 0_E = \sum_{i \,=\, 1}^n \left(y_i - z_i\right) \text{ . Or l'unicit\'e de d\'ecomposition de } 0_E \text{ donne alors } \forall i \in \llbracket 1, n \ \rrbracket \ y_i - z_i = 0_E \text{ i.e. } \forall i \in \llbracket 1, n \ \rrbracket \ y_i = z_i \end{aligned}$$

B) ESPACES VECTORIELS DE DIMENSION FINIE

I) Existence de bases

Espace vectoriel de dimension finie

Définition: Un espace vectoriel sur K est dit de **dimension finie** s'il possède une famille génératrice finie

Exemples: $\mathbb{R}_n[X]$ admet $(I, X, X^2, ..., X^n)$ comme base alors que $\mathbb{C}[X]$ n'est pas de dimension finie Existence de base

<u>Théorème 1:</u> Soit E un espace vectoriel de dimension finie non réduit à $\{0_E\}$. On suppose que $(x_k)_{1 \leq k \leq n}$ est une famille génératrice et qu'il existe une partie I de $[\![1,n]\!]$ telle que $(x_i)_{i\in I}$ soit libre. Alors il existe une partie J de $[\![1,n]\!]$ contenant I pour laquelle $(x_i)_{i \in J}$ est une base de E.

<u>Dem</u>: On note $\mathcal{G} = (x_k)_{1 \le k \le n}$

Soit \Re l'ensemble des sous familles libres de \Im . \Re est non vide car $(x_i)_{i\in I}$ est libre.

Soit $P = \{ card(\mathfrak{L}) \mid \mathfrak{L} \in \mathfrak{R} \}$. P est une partie non vide majorée de \mathbb{N} donc admet un plus grand élément p. Ainsi il existe une sous famille libre de \mathcal{G} de cardinal n. On appelle \mathcal{L}_p une telle famille. On pose $\mathcal{L}_p = (y_1,...,y_p)$.

Montrons qu'elle est génératrice. Pour ce faire nous allons d'abord montrer que $\mathcal{G} \in \text{vect} (\mathcal{L}_p^{\circ})$.

Soit $x_i \in \mathcal{G}$. Si x_i est un vecteur de \mathcal{L}_p , il n'y a pas de problème : x_i est bien dans vect(\mathcal{L}_p).

Si $x_i \notin \mathcal{L}_p$, alors $\mathcal{L}_p \cup \{x_i\}$ est liée car contient p+1 vecteurs de \mathcal{G} . Aussi il existe des scalaires non tous nuls α et

$$(\lambda_1,...,\lambda_p)$$
 avec $\alpha x_i + \sum_{k=1}^p \lambda_k x_k = 0_E$. Or \mathcal{L}_p^p est libre, donc $\alpha \neq 0$. (Sinon on aurait $\sum_{k=1}^p \lambda_k x_k = 0_E$ avec les (λ_k) non tous nuls)

$$(\lambda_1,..,\lambda_p) \text{ avec } \alpha \ x_i + \sum_{k=1}^p \lambda_k \ x_k = 0_E. \text{ Or } \mathscr{L}_p \text{ est libre, donc } \alpha \neq 0. \text{ (Sinon on aurait } \sum_{k=1}^p \lambda_k \ x_k = 0_E \text{ avec les } (\lambda_k) \text{ non tous nuls)}$$

$$\text{Aussi } x_i = \sum_{k=1}^p \frac{-\lambda_k}{\alpha} x_k. \text{ D'où } x_i \in \text{vect } (\mathscr{L}_p) \text{ . Ceci \'etant vrai pour tout } x_i \text{ , on a } \mathscr{G} \subset \text{vect } (\mathscr{L}_p).$$

En particulier $E = \text{vect}(\mathcal{G}) \subset \text{vect}(\text{vect}(\mathcal{L}_p)) = \text{vect}(\mathcal{L}_p) \subset E$. Donc \mathcal{L}_p est génératrice.

Corollaire. Existence d'une base:

Soit E un espace vectoriel de dimension finie non réduit à $\{0_E\}$.

Alors E possède au moins une base

<u>Dem</u>: Soit \mathcal{G} famille génératrice de p vecteurs. Grâce au Th1, on en extrait une base...

Théorême de la base extraite

Théorème : Th de la base extraite Soit E un espace vectoriel de dimension finie non réduit à $\{0_E\}$. Soit \mathcal{G} une famille génératrice finie de p vecteurs de E.

Alors de $\mathfrak G$, on peut extraire au moins une sous famille libre et génératrice.

<u>Dem</u>: Soit $\mathcal{G} = (g_1, ..., g_p)$ génératrice de E. Puisque E n'est pas réduit à $\{0_E\}$, \mathcal{G} contient un vecteur non nul. On peut supposer que l'on $a: g_1 \neq 0_E$ et ensuite on utilise le Th1 avec comme partie I de $\{1,...,p\}$ le singleton $I = \{1\}$

Théorème de la base incomplète

Théorème de la base intermédiaire : Soit E un espace vectoriel de dimension finie non réduit à $\{0_E\}$. Soit \mathcal{G} une famille génératrice de p vecteurs de E. Soit \mathcal{L} une famille libre de E. Alors on peut compléter \mathcal{L} par des vecteurs de \mathcal{G} , bien choisis, pour former une base de E.

Dem: Soit $\mathcal{G}' = \mathcal{G} \cup \mathcal{L}$. On considère H l'ensemble des sous familles libres de \mathcal{G}' . contenant \mathcal{L} . On montre que H est non vide et que admet un plus grand élément n et on poursuit la démonstration comme au Th1

Théorème de la base incomplète: Soit E un espace vectoriel de dimension finie non réduit à $\{0_E\}$. Soit \mathcal{L} une famille libre de E. Alors on peut compléter \mathcal{L} par des vecteurs de E, bien choisis, pour former une base de E.

Dem: Il suffit de choisir les vecteurs pour compléter la famille libre dans une famille génératrice de E.

II) <u>Dimension d'un espace de dimension finie</u> <u>Dimension</u>

<u>Théorème</u> Soit E un K-ev. Soit \mathcal{F} une famille finie, de cardinal n, de vecteurs de E. Soit \mathcal{G} une famille de (n+1) vecteurs de vect(\mathcal{F}). Alors \mathcal{G} est liée.

<u>Dem</u>: Par récurrence sur n. On appelle P_n la propriété de récurrence:

"Pour toute famille & de n vecteurs, toute famille de n+1 vecteurs de vect (&) est liée "

- * Si n = 0, alors F est la famille vide donc $\text{vect}(\mathfrak{F}) = \{0_E\}$. Ainsi si G est une famille de 1 vecteur de $\text{vect}(\mathfrak{F})$, on a $\mathfrak{G} = (0_E)$ liée.
- * Si P_{m-1} est vraie. Soit $\mathcal{F} = (e_1, ..., e_m)$ et $\mathcal{F} = (x_1, ..., x_m, x_{m+1})$. On a pour tout k de $\{1, ..., m+1\}$, $x_k = \sum_{i=1}^m \alpha_{i,k} e_i$
- Si tous les $\alpha_{m,\,k}$ sont nuls, alors tous les x_k sont dans vect $(e_1,...,\,e_{m-1}]$ et d'après $P_{m-1},\,(x_1,...,\,x_m)$ est liée donc donc $\,^{\mathcal{G}}$ aussi.
- Si il existe un k pour lequel, $\alpha_{m, k}$ est non nul. Quitte à changer l'ordre dans \mathcal{G} on peut prendre k=m+1, i.e. $\alpha_{m, m+1} \neq 0$

Pour $j \leq m,$ on définit $y_j = x_j - \frac{\alpha_{m,\,j}}{\alpha_{m,\,m+1}} \;\; x_{m+1}.$ On a :

$$y_{j} = \sum_{i=1}^{m} \alpha_{i,\,j} \ e_{i} - \frac{\alpha_{m,\,j}}{\alpha_{m,\,m+1}} \sum_{i=1}^{m} \alpha_{i,\,m+1} \ e_{i} = \sum_{i=1}^{m} \left(\alpha_{i,\,j} - \frac{\alpha_{m,\,j}}{\alpha_{m,\,m+1}} \ \alpha_{i,\,m+1} \ \right) \\ e_{i} = \sum_{i=1}^{m-1} \lambda_{i,\,j} \ e_{i} \ car \ le \ terme \ en \ e_{m} \ s'annule.$$

Aussi $(y_1,...,y_m)$ est une famille de m vecteurs de vect $(e_1,...,e_{m-1})$ donc elle est liée donc :

$$\exists \; (\Gamma_1,...,\Gamma_m) \neq (0,...,0) \; \big| \; \sum_{i=1}^m \Gamma_i \; y_i = 0_E \; \text{ mais alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec au alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_{m+1} = 0_E \; \text{ avec alors on a une relation linéaire du type} : \sum_{i=1}^m \Gamma_i \; x_i + \gamma \; x_$$

moins un des coefficients (un Γ_i) non nul. Ainsi $\,\,^{\,\mathfrak{S}}\,$ est liée. Donc P_m vraie.

Donc par théorème de récurrence, on a P_n vraie pour tout n.

Remarque: On déduit du théorème le fait que toute famille de plus de n+1 vecteurs dans un espace engendré par une famille de n vecteurs est liée (car toute sur-famille d'une famille liée est liée)

<u>Théorème</u> Soit E un espace vectoriel de dimension finie. Alors toutes les bases de E possèdent le même nombre d'éléments.

Dem: On sait que E possède une base \Re_0 . Soit n le cardinal de cette base. D'après le Th1, toute famille possédant n+1 vecteurs est liée. En particulier, si \Re est une autre base, son cardinal est \leq à n. Soit p le cardinal de \Re . \Re_0 est une famille libre dans vect(\Re) donc son cardinal est nécessairement \leq à p. Aussi n = p.

<u>Définition</u>: Soit E est un d'un espace vectoriel de dimension finie.

Le cardinal commun à toutes les bases de E s'appelle la **dimension** de E et se note dim(E)

Exemple: $K_n[X]$ est de dimension n + 1, K^n est de dimension n.

L'espace des solutions d'une équation différentielle linéaire homogène d'ordre 1 est de dimension 1.

L'espace des solutions d'une équation différentielle linéaire homogène d'ordre 2 à coefficients constants est de dimension 2

L'espace des suites vérifiant une reation de récurrence linéaire homogène d'ordre 2 à coeeficients contants est de dimension 2

Caractérisation des bases

Théorème Soit E un espace vectoriel de dimension finie n.

- 1) Toute famille libre a un cardinal \leq à n avec égalité si et seulement si c'est une base.
- 2) Toute famille génératrice a un cardinal ≥ à n avec égalité si et seulement si c'est une base

Dem: 1) Si \mathcal{F} est une famille libre, d'après le Th1, son cardinal est $\leq a$ n.

Si son cardinal est n, alors quel que soit le vecteur x que l'on ajoute à \mathcal{F} , on crée une famille liée. Donc, en reprenant ce que l'on a fait dans le Th2, on en déduit que ce vecteur x était combinaison linéaire des vecteurs de F: F est donc génératrice.

2) Si \$\mathbb{F}\$ est une famille génératrice, alors on peut lui extraire une base qui possédera n vecteurs: c'est donc que \$\mathbb{F}\$ possède au moins n vecteurs. Si \$\mathbb{F}\$ possède exactement n vecteurs, on peut toujours lui extraire une base qui aura le même nombre de vecteurs: c'est donc que la base extraite est \$\mathbb{F}\$ tout entier et \$\mathbb{F}\$ est une base.

Convention: $dim(\{0\}) = 0$

Espace produit

Soit E un espace vectoriel de dimension finie n et F un e-v de dimension p. On considère (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_p) une base de F.

Théorème: E×F est un espace de dimension finie n+p et une base en est:

$$(\mathcal{E}_1,...,\mathcal{E}_n,\mathcal{E}_{n+1},...,\mathcal{E}_{n+p})$$
 où $\varepsilon_k = (e_k,0)$ si $k \le n$ et $\varepsilon_{n+k} = (0,f_k)$ si $k \le p$.

<u>Dem</u>: On va directement montrer que la famille proposée est une base.

<u>**La famille est génératrice:**</u> Soit $(x,y) \in E \times F$. on peut écrire $x = \sum_{i=1}^{n} \lambda_i e_i$ et $y = \sum_{k=1}^{p} \beta_k f_k$. Or

$$(x,y) = (x,\, 0_F) + (0_E\,,\, y) = \left(\sum_{i\,=\,1}^n \lambda_i\; e_i\;,\, 0_F\;\right) + \left(0_E\,,\, \sum_{k\,=\,1}^p \beta_k\; f_k\right) = \sum_{i\,=\,1}^n \lambda_i\; (e_i,\, 0_F) + \sum_{k\,=\,1}^p \beta_k\; (0_E\;,\, f_k) = \sum_{j\,=\,1}^{n+p} \alpha_j\; \epsilon_j$$

avec $\alpha_j = \lambda_j$ si $j \le n$ et $\alpha_j = \beta_{j-n}$ si j > n. Donc la famille est bien génératrice.

<u>La famille est libre</u>: Soit $(\lambda_k)_{1 \le k \le n+p}$ telle que $\sum_{k=1}^{n+p} \lambda_k \ \epsilon_k = 0_{E \times F} = (0_E, 0_F)$. On a alors

$$(0_E \text{ , } 0_F) = \sum_{k=1}^{n+p} \lambda_k \; \epsilon_k = \sum_{i=1}^n \lambda_i \; (e_i, \, 0_F) + \sum_{k=1}^p \lambda_{n+k} \; (0_E \text{ , } f_k) = \left(\sum_{i=1}^n \lambda_i \; e_i \text{ , } \sum_{k=1}^p \lambda_{n+k} \; f_k \right) = (0_E \text{ , } 0_F)$$

 $D'o\grave{u}: \sum_{i=1}^n \lambda_i \ e_i = 0_E \ \text{ et } \sum_{k=1}^p \lambda_{n+k} \ f_k = 0_F \quad \text{. Or les familles } (e_k) \ \text{et } (f_k) \ \text{sont libres donc tous les } \lambda_k \ \text{sont nuls.}$

Aussi la famille (ε_k) est libre.

Corollaire: Soient $E_1, E_2, ..., E_n$ n K-espaces vectoriels de dimension finie. Alors

$$E_1 \times E_2 \times ... \times E_n$$
 est un K-e.v. de dimension finie, et sa dimension est $\sum_{i=1}^n dim(E_i)$

<u>Dem</u>: On raisonne sur récurrence sur le nombre d'espaces concernés.

Rang d'une famille de vecteurs

<u>Définition</u>: Soit \mathscr{F} une famille finie de vecteurs de E. On appelle **rang** de \mathscr{F} et on note $\operatorname{rg}(\mathscr{F})$, la dimension de l'espace engendré par \mathscr{F} : vect (\mathscr{F}) .

Propriétés immédiates: 1) \mathscr{F} est de rang \leq dim(E) et \mathscr{F} est génératrice \Leftrightarrow rg (\mathscr{F}) = dim(E)

2) Si F est constituée de p vecteurs alors rg(F) ≤p avec égalité ssi F est libre Dem: Immédiat

III) Sous-espace vectoriel d'un espace vectoriel de dimension finie

<u>Théorème</u>: Tout sous-espace vectoriel F de E de dimension finie $n \neq 0$ est de dimension finie $p \leq n$. De plus, $p = n \Leftrightarrow E = F$.

Dem: Si $F = \{0_E\}$, F est de dimension 0 donc de dimension finie.

 $Si\ F \neq \{0_E\}$. Soit \Re l'ensemble des familles libres de F. \Re est non vide car, par exemple, la famille (x) est libre avec x vecteur de F non nul. $Si\ \mathscr L$ est une famille libre de vecteurs de F, alors $\mathscr L$ est libre dans E donc $card(\mathscr L) \leq n$.

Soit alors $P = \{ card(\mathfrak{D}) \mid \mathfrak{D} \in \mathfrak{R} \}$. Les remarques précédentes nous permettent d'affirmer que P est une partie non vide de \mathbb{N} , majorée par n donc admet un plus grand élément p.

Ainsi il existe une famille libre de F de cardinal maximal p. On appelle \mathcal{L}_p^o une telle famille. Comme au Th2 de la partie II, on montre que \mathcal{L}_p^o est une famille génératrice de F car lui ajouter un vecteur de F la rend liée. D'où F est de dimension finie $p \le n$. Si E = F alors on a évidemment p = n.

Si n=p. Alors soit $\mathfrak B$ une base de F. $\mathfrak B$ est libre dans F donc dans E. Mais $\mathfrak B$ a n vecteurs. Donc d'après un corollaire du théorème de la base incomplète (Th4 partie II), $\mathfrak B$ est une base de E. Donc vect($\mathfrak B$) =E =F car $\mathfrak B$ engendre E et F.

<u>Définition</u>: On appelle **droite** (**vectorielle**) de E, un sous-espace vectoriel de dimension 1. **Dimension d'une somme directe**

<u>Théorème : Existence d'un supplémentaire:</u> Soit E un K-espace vectoriel de dimension finie n. Soit F un sous-espace vectoriel de E. Alors F possède au moins un supplémentaire.

<u>Dem</u>: Si $F=\{0_E\}$ alors $E=E \oplus F$. Si F=E alors $E=\{0_E\} \oplus F$

Si $F \neq \{0_E\}$ et $F \neq E$ alors F est de dimension finie p telle que $1 \leq p \leq n-1$. Soit \mathfrak{B}_0 une base de F. C'est une famille libre de E. Donc par le théorème de la base incomplète on peut lui adjoindre des vecteurs afin de créer une base \mathfrak{B} (qui possédera p vecteurs) de E. Si $\mathfrak{B}_0 = (e_1, \ldots, e_p)$ et $\mathfrak{B} = (e_1, \ldots, e_n)$, on appelle $G = \text{vect}(e_{p+1}, \ldots, e_n)$. On vérifie que G est un supplémentaire de F.

Corollaire: Tous les supplémentaires de F dans E ont la même dimension n-p

Dem: * Le supplémentaire de F créé au théorème précédent est bien de dimension n-p

** Soit G' un supplémentaire quelconque de F. On considère $\mathfrak{B}_0=(e_1,\ldots,e_p)$ une base de F et $\mathfrak{B}_1=(\epsilon_1,\ldots,\epsilon_q)$ une base de G'. On considère enfin $(e_1,\ldots,e_p$, $e_{p+1},\ldots,e_{p+q})$ où $e_{p+k}=\epsilon_k$. On montre alors que cette famille est une base de E et donc $\dim(E)=\dim(F)+\dim(G')$.

<u>Théorème</u>: Soit E un K-espace vectoriel de dimension finie n. Soient $F_1, F_2, ..., F_p$ p sous-espaces vectoriels de E. On suppose que ces sous-espaces sont en somme directe.

Alors: dim
$$\left(\bigoplus_{j=1}^{p} F_{j} \right) = \sum_{j=1}^{p} dim(F_{j})$$

<u>**Dem**</u>: On raisonne comme dans le théorème précédent. On considère des bases $\mathcal{B}_1, \mathcal{B}_2, \dots$ et \mathcal{B}_p de F_1 ,

 $F_2, ..., F_p$. En "juxtaposant" ces bases dans une famille \mathscr{F} , on montre aisément que \mathscr{F} est une base de $\bigoplus_{j=1}^p F_j$

<u>Définition</u>: La base de $\bigoplus_{j=1}^{p}$ F_j obtenue est dite **adaptée** à la décomposition en somme directe

Dimension d'une somme de sous-espaces vectoriels

<u>Théorème : Formule de Grassmann</u> Soit E un K-espace vectoriel de dimension finie n. Soient F et G deux sous-espaces vectoriels de E. Alors F+G est un sous-espace vectoriel de E (donc de dimension finie) et $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$

Dem: F+G et $F\cap G$ sont deux sous-espaces vectoriels de E donc de dimension finie.

 $H=F\cap G$ est un sous-espace vectoriel de F. Soit alors K un supplémentaire de H dans F. On a $\dim(F)=\dim(H)+\dim(K)$.

Or $F+G=(K\oplus H)+G=(K+H)+G=K+(H+G)=K+G$ car $H\subset G$. Mais $K\subset F$ et $K\cap H=\{0_E\}$ donc $K\cap G=\{0_E\}$.

Donc $L = F+G = K+G = K \oplus G$ est de dimension $\dim(L) = \dim(K) + \dim(G)$.

D'où, en remplaçant par la valeur de $\dim(K)$, on a $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$

Caractérisation des sous espaces supplémentaires en dimension finie

<u>Théorème</u>: Caractérisation des sous-espaces supplémentaires. Soit E un K espace de dimension finie. Soit F et G deux sous-espaces de E. Alors:

$$E = F \oplus G \iff E = F + G \text{ et } F \cap G = \{0_E\} \iff E = F + G \text{ et } dim(F) + dim(G) = dim(E)$$

$$\Leftrightarrow$$
 $F \cap G = \{0_E\}$ et $dim(F) + dim(G) = dim(E)$

Dem: Exercice

Théorème: Soit E un K-espace vectoriel de dimension finie n. Soient F₁, F₂, ..., F_p p

s.e.v. de E. Alors : dim $\binom{\sum\limits_{j=1}^{p}}{\sum\limits_{j=1}^{p}} \dim(F_j)$ avec égalité si et seulement si la somme est directe

<u>Dem</u>: On raisonne par récurrence sur p

C) APPLICATIONS LINEAURES

I) Applications linéaires

Application linéaire

Soient E et F deux espaces vectoriels sur K. Soit f une application de E dans F

<u>Définition</u>: On dit que f est une application linéaire (ou morphisme de K-espaces vectoriels) si et

seulement si: $\forall \lambda \in K$, $\forall (X,Y) \in E^2$, f(X+Y) = f(X) + f(Y) et $f(\lambda \cdot X) = \lambda \cdot f(X)$

<u>Définition</u>: Une **forme linéaire** sur E est une application linéaire de E sur K

Exemple: $f: \mathbb{C} \to \mathbb{R}, z \to \text{Re}(z)$ est une forme linéaire

Composition des applications linéaires

Théorème : La composée de deux applications linéaires est une application linéaire

Définition: Un **isomorphisme** est une application linéaire bijective de E dans F. Un **endomorphisme** de E est une application linéaire de E dans E Un **automorphisme** de E est un endomorphisme bijectif de E.

Exemples: -L'application: $\mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \to (y,x)$ est un automorphisme de \mathbb{R}^2

- L'application : $\mathbb{C} \to \mathbb{R}^2$, z=x+iy \to (x,y) est un isomorphisme

- La conjugaison est un automorphisme de C

Théorème: La bijection réciproque d'un isomorphisme est un isomorphisme

<u>Dem</u>: Soit f un isomorphisme de E vers F. Soit $(\lambda, X, Y) \in K \times F \times F$.

On pose $z = f^{-1}(X)$ et $t = f^{-1}(Y)$ et on a: $f^{-1}(\lambda \cdot X) = f^{-1}(\lambda \cdot f(z)) = f^{-1}(f(\lambda \cdot z)) = \lambda \cdot z = \lambda \cdot f^{-1}(X)$ $f^{-1}(X+Y) = f^{-1}(f(z) + f(t)) = f^{-1}(f(z+t)) = z+t = f^{-1}(X) + f^{-1}(Y)$

Espace des applications linéaires d'un espace vectoriel vers un autre

Soient E et F deux K-e.v. On note $L_K(E,F)$ ou L(E,F) l'ensemble des applications linéaires de E vers F.

Théorème : $(L_K(E,F), +, \cdot)$ est un K-espace vectoriel

<u>**Dem**</u>: On vérifie aisément les huit axiomes, l'élément neutre étant l'application $t \to 0_F$ On note $L_K(E) = L_K(E,E) = L$ (E,E) l'ensemble des endomorphismes de E.

<u>Propriété</u>: 1) Soit $u \in L_K(E)$. L'application $f: L_K(E,F) \to L_K(E,F)$, $v \to v$ o u est linéaire 2) Soit $v \in L_K(F)$. L'application $g: L_K(E,F) \to L_K(E,F)$, $u \to v$ o u est linéaire

<u>Dem</u>: 1) $f(\lambda \cdot v_1 + \beta \cdot v_2) = (\lambda \cdot v_1 + \beta \cdot v_2)$ o $u = \lambda \cdot v_1$ o $u + \beta \cdot v_2$ o $u = \lambda \cdot f(v_1) + \beta \cdot f(v_2)$ De même pour 2).

Remarque : On dit que la composition est bilinéaire

Equations linéaires

Soient E et F deux espaces vectoriels sur K.

<u>Définition</u>: Une **équation linéaire** est une équation du type: f(x) = y où $f \in L_K(E,F)$, $y \in F$ fixé et x inconnue dans E.

<u>Définition</u>: Soit $f \in L_K(E,F)$. On appelle **image de** f et on note Im(f), l'ensemble f(E). On appelle **noyau de** f et on note $ext{ker}(f)$ l'ensemble $ext{x} \in E \mid f(x) = 0_F = f^{-1}\{0_F\}$

Théorème : Soit $f \in L_K(E,F)$

- 1) Si G est sous-espace vectoriel de E alors f(G) est un sous-espace vectoriel de F. En particulier, Im(f) est un sous-espace vectoriel de F.
- 2) Si H est sous-espace vectoriel de F alors $f^{-1}(H)$ est un sous-espace vectoriel de E. En particulier, $\ker(f)$ est un sous-espace vectoriel de E
- 3) f surjective \Leftrightarrow Im(f) = F et f injective \Leftrightarrow ker(f) = { 0_E (Caractérisation de l'injectivité)

Dem: Rem: Tout a déjà été montré pour l'addition dans le chapitre sur les groupes.

- 1) Soit $y \in f(G)$. $\exists x \in G \mid y = f(x)$. Donc $\forall \lambda \in K$, $\lambda \cdot y = \lambda \cdot f(x) = f(\lambda \cdot x)$. Or G est un sous-espace vectoriel de E donc $\lambda \cdot y \in f(G)$. Donc f(G) est non vide (car G non vide) et stable par + (cf. groupes) et \cdot . Donc f(G) est un sous-espace vectoriel de F.
- 2) Soit x∈f⁻¹(H). Donc f (x) ∈H. ∀λ ∈K, f (λ·x) = λ·f (x). Or H est un sous-espace vectoriel de F donc λ·f (x) ∈H. Donc λ·x ∈f⁻¹(H). Ainsi f⁻¹(H) est non vide (car contient 0_E) et est stable par + (cf. groupes) et ·: donc f⁻¹(H) est un sous-espace vectoriel de E.
- 3) * f surjective \Leftrightarrow Im(f) = F est évident.
 - * Si f injective, alors $f(x) = 0_F$ a au plus une solution. Or 0_E est solution donc $\ker(f) = \{0_E\}$

Si $\ker(f) = \{0_E\}$. Soient x et y tels que f(x) = f(y). On a $f(x-y) = 0_F$ donc x-y=0_E donc x=y. Ainsi f injective.

<u>Propriété</u>: Soit $f \in L_K(E,F)$. Soit $b \in F$. On cherche $S = \{x \in E \mid f(x) = b\}$.

Alors soit $S = \emptyset$ soit $S = x_0 + \ker(f) = \{x \in E \mid \exists y \in \ker(f), x = x_0 + y \}.$

<u>Dem</u>: Si S = \varnothing fini. Sinon, $\exists x_0 \in S$. On a alors $x \in S \Leftrightarrow f(x) = f(x_0) \Leftrightarrow f(x - x_0) = 0_F \Leftrightarrow x - x_0 \in \ker(f)$

<u>Théorème</u>: Soient E et F deux K-espaces vectoriels. Soit $u \in L(E,F)$. Si \mathcal{F} est une famille génératrice de E, alors $\mathcal{G} = u$ (\mathcal{F}) est une famille génératrice de Im(u).

<u>Dem</u>: On écrit $\mathcal{F} = (x_i)_{i \in I}$ et $\mathcal{G} = (u(x_i))_{i \in I}$.

 $\textbf{a) Soit } y \in Im(u), \ \exists \ x \in E \ | \ y = u(x) \ . \ \ \textbf{\textit{\$}} \ \ \text{génératrice donc } \exists (\lambda_t)_{\ i \in I} \in K^I \ \text{presque nulle} \ \ x = \sum_{i \in I} \lambda_i \ x_i$

D'où
$$y = u \left(\sum_{i \in I} \lambda_i x_i \right) = \sum_{i \in I} \lambda_i u \left(x_i \right) \in \text{vect} (\mathfrak{G}). \text{ Donc Im}(u) \subset \text{vect} (\mathfrak{G})$$

$$\textbf{b)} \ \text{Soit} \ \ z \in \text{vect} \ (\ \mathfrak{G}). \ \exists (\lambda_t)_{\ i \in I} \in K^I \ \text{presque nulle} \ \ \bigg| \ z = \sum_{i \ \in \ I} \lambda_i \ \ u \bigg(x_i \bigg) = \ u \left(\sum_{i \ \in \ I} \lambda_i \ \ x_i \right) \in Im(u). \ \ Donc \ vect(\ \mathfrak{G}\) \subset Im(u)$$

<u>Théorème</u>: Soient E et F deux K-espaces vectoriel. Soit $\mathfrak B$ une base de E. Soit $u \in L(E,F)$. On note $\mathfrak G = u \ (\mathfrak B)$ l'image de $\mathfrak B$ par u. Alors :

u est un isomorphisme $\Leftrightarrow \mathcal{G}$ est une base de F

<u>Dem</u>: On sait déjà, d'après la question précédente que \mathcal{G} est une famille génératrice de Im(u). Ainsi : u est surjective \Leftrightarrow Im(u) = F \Leftrightarrow \mathcal{G} est une famille génératrice de F. Pour l'injectivité.

* Si u est injective, montrons que $\mathscr G$ est libre. Soit $(\lambda_\iota)_{i\in I}\in K^I$ presque nulle $0_F=\sum_{i\in I}\lambda_i^{}$ u $(e_i^{})$ avec $\mathscr G=(e_i)_{i\in I}$

On a :
$$u\left(\sum_{i\in I}\lambda_i^-e_i^-\right)=0_F$$
. Or u est injective donc $\sum_{i\in I}\lambda_i^-e_i^-=0_E$. Or $\mathfrak B$ est libre, donc $\forall i\in I,\,\lambda_i=0_K$: Donc $\mathfrak S$ est libre

$$* \text{ Si } \mathcal{G} \text{ est libre. Soit } x \in \text{ker}(u). \ \exists (\lambda_t)_{i \in I} \in K^I \text{ presque nulle} \ | \ x = \sum_{i \in I} \lambda_i^- e_i^- . \ u(x) = 0_F \text{ donc } 0_F = \sum_{i \in I} \lambda_i^- u(e_i^-). \text{ Or } \mathcal{G} \text{ est libre.}$$

libre donc $\forall i \in I$, $\lambda_i = 0_K$ Ainsi x est nul. Comme ker(u) est non vide, on a ainsi ker(u) réduit à 0_E et donc u injective.

Rang d'une application linéaire

Soient E et F deux K-espaces vectoriels. Soit $f \in L_K(E,F)$.

<u>Définition</u>: On dit que f est de rang fini si la dimension de Im(f) est finie. On appelle rang de f la dimension de Im(f) et on note rg(f) = dim(Im(f))

<u>Proposition: Invariance du rang par composition par un isomorphisme</u>: Soient E, F, G trois espaces vectoriels. Soient $f \in L_K(E,F)$, $g \in L_K(F,G)$ et h = g o $f \in L_K(E,G)$. Alors:

- a) Si f est de rang fini et g est un isomorphisme, h est de rang fini et rg(h) = rg(f)
- b) Si g est de rang fini et f est un isomorphisme, h est de rang fini et rg(h) = rg(g)

<u>Dem</u>: a) Si f est de rang fini et g est un isomorphisme. Soit \mathfrak{B} une base de Im(f). $g(\mathfrak{B})$ est libre (car g injective) et est génératrice de Im(h) donc h est de rang fini et rg(h) = rg(f).

b) Si g est de rang fini et f est un isomorphisme. Im(h) \subset Im(g) car les éléments de Im(h) s'écrivent g(f(x)). On a également l'inclusion inverse car les éléments de Im(g) s'écrivent g(x) = h($f^{-1}(x')$). Donc h est de rang fini et rg(h) = rg(g)

II) **Endomorphismes**

Endomorphisme

Soit E un espace vectoriel sur K. On rappelle qu'un endomorphisme de E est une application linéaire de E vers E.

Exemple: L'application Id_E identité de E, qui à tout x de E associe x, est un endomorphisme de E.

Exemple: Soit $\lambda \in K$. L'application $\lambda.Id_E$, appelée homothétie de rapport λ est un endomorphisme de E

Théorème: (L(E), +, 0) est un anneau (non commutatif si dim $(E) \ge 2$)

<u>Dem</u>: On a toutes les propriétés nécessaires avec la loi de groupe + car L(E) est un K-e.v. Pour la loi o:

- L'application e = Id_E qui à tout x de E associe x est un endomorphisme de E, neutre pour o.
- L'associativité de la composition est toujours vérifiée. Pour les distributivités:
 - (f+g) o h = f o h + g o h est toujours vérifiée.
 - $\forall x \in E$, $(f \circ (g+h))(x) = f(g(x) + h(x)) = f(g(x)) + f(h(x))$ car f linéaire

Remarque: On pourra noter, lorsque u et v sont dans L(E), la composée u o v sous la forme uv.

Projecteurs

Soit E un espace vectoriel sur K.

<u>Définition</u>: Soient F et G deux sous-espaces supplémentaires de E . On appelle **projecteur** d'axe F parallèlement à G, l'application p: $E \rightarrow E$, $x \rightarrow y$ si x = y+z avec $y \in F$ et $z \in G$.

Remarque: p est un endomorphisme de E, d'image F et de noyau G.

Théorème : Caractérisation des projecteurs:

Soit f un endomorphisme de E. f est un projecteur $\Leftrightarrow f$ o f = f

<u>Dem</u>: (\Rightarrow) Si f est le projecteur d'axe F parallèlement à G avec $E = F \oplus G$.

Soit $x \in E$, $\exists ! (y,z) \in F \times G \mid x = y + z$. On a f(x) = y. Mais $y = y + 0_E$ avec $y \in F$ et $0_E \in G$. Donc f(y) = y. En particulier $f \circ f = f$ (\Leftarrow) Si $f \circ f = f$. On note F = Im(f) et G = ker(f). Montrerons que F et G sont supplémentaires.

- Soit $x \in F \cap G$. On a $f(x) = 0_E$ et $\exists y \in E \mid x = f(y)$. Donc $f(f(y)) = 0_E$.

Or $f \circ f = f$ donc f(f(y)) = f(y) = x. Aussi $x = 0_E$. Comme $0_E \in F \cap G$, $F \cap G = \{0_E\}$

Soit $x \in E$. On veut montrer que $\exists (y,z) \in F \times G \mid x = y + z$.

Analyse: Si c'était le cas, alors f(x) = f(y) et $\exists y' \in E \mid y = f(y')$ d'après les définitions de F et G.

Donc f(x) = f(y) = f(f(y)) = f(y) (car $f \circ f = f$). Ainsi y = f(x) et z = x - f(x)

Synthèse: On pose y = f(x) et z = x - f(x). On a bien $y \in F = Im(f)$.

 $f(z) = f(x) - f(f(x)) = f(x) - f(x) = 0_E$. Donc $z \in G = \ker(f)$ Ainsi E = F + G

Comme on a vu que si x = y+z avec $(y,z) \in F \times G$, on a nécessairement y = f(x), f est bien le projecteur d'axe F et de direction G.

Symétrie d'axe F parallèlement à G :

Soient F et G deux sous-espaces vectoriels supplémentaires dans E. Soit p le projecteur d'axe F parallèlement à G.

On appelle symétrie d'axe F parallèlement à G, l'endomorphisme $s = 2p - Id_E$

s est un automorphisme: en effet, si x = y + z avec $y \in F$ et $z \in G$, on a:

s(x) = 2p(y) + 2p(z) - y - z = y - z donc s est injective.

Théorème : 1) Soit s une symétrie. Alors s est involutive, i.e., $s^2 = Id_E$

2) Soit u un endomorphisme involutif de E. Alors u est la symétrie d'axe Im(u+Id_E)

de direction $ker(u+Id_E)$ (ou d'axe $ker(u-Id_E)$ et de direction $Im(u-Id_E)$)

Dem: 1) $s = 2p - Id_E$. Alors $s^2 = (2p-Id)$ o $(2p-Id) = 4p^2 - 4p + Id = Id$ car $p^2 = p$

2) Si $u^2 = Id$. Soit $q = \binom{1}{2}$ (u+Id). On a q o $q = \frac{1}{4}u^2 + \frac{1}{2}u + \frac{1}{4}Id = q$. Donc q est un projecteur et on a u = 2q - Id et u est la symétrie d'axe F = Im(q) et de direction G = ker(q).

Or F = Im(q) = Im(u+Id) = ker(u-Id). En effet:

- Si $x \in F$. $\exists y \in E$ tel que x = (u+Id)(y). On a $u(x) x = u^2(y) + u(y) u(y) y = 0$
- Si $x \in \text{ker}(u\text{-Id})$. On a u(x) = x donc 2x = u(x) + x donc $x = (u\text{+Id}) (\frac{1}{2}x) \in \text{Im}(u\text{+Id})$

De même G = ker(q) = Im(u-Id). En effet:

- Si $x \in Im(u-Id)$. $\exists y \in E$ tel que x = (u-Id)(y). On a $u(x) + x = u^2(y) u(y) + u(y) y = 0$
- Si $x \in G$. On a u(x) + x = 0 donc 2x = u(-x) (-x) donc $x = (u-Id)(-\frac{1}{2}x) \in Im(u-Id)$

Groupe linéaire

Théorème: L'ensemble GL(E) des automorphismes de E est un groupe pour la loi o

<u>**Dem**</u>: La composée de deux automorphismes est un automorphisme, Id_E est un automorphisme élément neutre pour la loi o, la loi o est associative et la bijection réciproque d'un automorphisme est un automorphisme.

Définition: On appelle ce groupe GL(E), le groupe linéaire de E.

III) Détermination d'une application linéaire

Image d'une famille de vecteurs

<u>Théorème</u>: Soit E et F deux K-e-v. Soit $\mathcal{G} = (g_i)_{i \in I}$ une famille génératrice de E.

Soit $u \in L(E,F)$. On note $\forall i \in I$, $u(g_i) = f_i$ et $\mathcal{F} = (f_i)_{i \in I}$. Alors:

- (i) $\mathcal{F} = (f_i)_{i \in I}$ est une famille génératrice de Im(u)
- (ii) Si u est surjective, alors $\mathcal{F} = (f_i)_{i \in I}$ est une famille génératrice de F.

Dem: Déjà vu

<u>Théorème</u>: Soit E et F deux K-e-v. Soit $\mathcal{F} = (f_i)_{i \in I}$ une famille de E.

Soit $u \in L(E,F)$. On note $\forall i \in I$, $u(f_i) = x_i$. Alors:

- (i) Si \mathcal{F} est liée, la famille $(x_i)_{i \in I}$ est également liée
- (ii) Si \mathcal{F} est libre et <u>si u est injective</u>, alors la famille $(x_i)_{i \in I}$ est également libre.

 $\underline{\textbf{Dem}} \text{: (i)Si } \mathfrak{F} \text{ est liée, il existe une famille presque nulle mais non nulle } (\lambda_i)_{i \in I} \in K^I \text{ telle que } \sum_{i \in I} \lambda_i^{} f_i^{} = 0_E \,.$

Alors, comme $u(0_E)=0_F$ on en déduit, $\sum_{i\in I}\lambda_i^{} x_i^{}=0_F$ et donc $(x_i)_{i\in I}$ est liée.

(ii) Si \mathscr{F} est libre et si u est injective. Soit une famille presque nulle $(\lambda_i)_{i\in I}\in K^I$ telle que $\sum_{i\in I}\lambda_i^{} x_i^{}=0_F$. Alors

$$u\left(\sum_{i\in I}\lambda_i^{}f_i^{}\right)=0_F\text{ . Mais }u\text{ est injective, donc }\sum_{i\in I}\lambda_i^{}f_i^{}=0_E\text{ . Donc, comme } \mathfrak{F}\text{ est libre, on }a:\forall i\in I,\quad \lambda_i=0_K:(x_i)_{i\in I}\text{ est libre.}$$

Détermination d'une application linéaire

 $\underline{Th\acute{e}or\grave{e}me:} \ Soit \ E \ et \ F \ deux \ K-e-v. \ Soit \ \mathfrak{B} = (e_i)_{i \in I} \ une \ base \ de \ E.$

Soit $\mathcal{F} = (f_i)_{i \in I}$ une famille quelconque de vecteurs de F.

- (i) \exists ! $u \in L(E,F)$ telle que \forall $i \in I$, $u(e_i) = f_i$.
- (ii) u est injective si et seulement si $\mathcal{F} = (f_i)_{i \in I}$ est une famille libre de F.
- (iii) u est surjective si et seulement si $\mathcal{F}=(f_i)_{i\in I}\,$ est une famille génératrice de F.
- (iv) u est un isomorphisme si et seulement si $\mathcal{F} = (f_i)_{i \in I}$ est une base de F.

<u>Dem</u>: (i) Existence de l'application linéaire u.

On considère l'application u définie par : si $x = \sum_{i \in I} \lambda_i^{} e_i^{}$ avec $(\lambda_i)_{i \in I} \in K^I$ presque nulle , on pose u $(x) = \sum_{i \in I} \lambda_i^{} f_i^{}$. Montrons que u est une application linéaire de E vers F

Tout d'abord u est bien une application de E vers F.

De plus, si
$$\alpha \in K$$
 si $x = \sum_{i \in I} \lambda_i e_i$ et $y = \sum_{i \in I} \beta_i e_i$, on a $x + y = \sum_{i \in I} (\lambda_i + \beta_i) e_i$ et $\alpha x = \sum_{i \in I} \alpha \lambda_i e_i$. Aussi par définition de u

$$on \ a: \ u \ (x+y) = \sum_{i \ \in \ I} (\lambda_i^{} + \beta_i^{}) \ f_i^{} = \sum_{i \ \in \ I} \lambda_i^{} \ f_i^{} + \sum_{i \ \in \ I} \beta_i^{} \ f_i^{} = u \ (x) + u(y) \ \ \text{et} \ \ u \ (\alpha x) = \sum_{i \ \in \ I} \alpha \ \lambda_i^{} \ f_i^{} = \alpha \sum_{i \ \in \ I} \lambda_i^{} \ e_i^{} = \alpha \ u(x) : \ u \ \text{lin\'e\'aire}$$

Montrons maintenant l'unicité.

Supposons que u et v soient linéaires et vérifient $\forall i \in I, \ u \ (e_i) = v \ (e_i) = f_i$

On a
$$\forall$$
 i \in I, $(u-v)$ $(e_i) = 0_F$ donc : si $x \in$ E, avec $x = \sum_{i \in I} \lambda_i e_i$, $(u-v)$ $(x) = (u-v) \left(\sum_{i \in I} \lambda_i e_i\right) = \sum_{i \in I} \lambda_i (u-v) (e_i) = 0_F$

Aussi: $\forall x \in E, u(x) = v(x)$ et on a bien l'unicité

 $\underbrace{\text{(ii)} \ Si \ u \ injective} \ alors \ ker(u) = \{0_E\}. \ Montrons \ (f_i)_{i \in I} \ libre. \ Soit \ (\lambda_t)_{i \in I} \in K^I \ presque \ nulle \ telle \ que \\ \sum_{i \in I} \lambda_i \ f_i = 0_F$

On a :
$$\sum_{i \in I} \lambda_i f_i = 0_F \iff u \left(\sum_{i \in I} \lambda_i e_i \right) = 0_F \iff \sum_{i \in I} \lambda_i e_i \in \ker(u) \iff \sum_{i \in I} \lambda_i e_i = 0_E \iff \forall i \in I, \quad \lambda_i = 0_K$$

 $\underline{Si\;(f_i)_{i\in I}\;\text{libre}}\;.\;\;Soit\;\;x\in E.\;On\;\text{peut}\;l\text{'\'ecrire}\;\text{sous}\;la\;\text{forme}\;\;x\;=\;\sum_{i\;\in\;I}\lambda_i^{}\;\;e_i^{}\;\;\text{avec}\;(\lambda_t)_{\;i\in I}\in K^I\;\;\text{presque}\;\text{nulle}$

$$x = \sum_{i \in I} \lambda_i e_i \in \ker(u) \iff u \left(\sum_{i \in I} \lambda_i e_i \right) = 0_F \iff \sum_{i \in I} \lambda_i f_i = 0_F \iff \forall i \in I, \ \lambda_i = 0_K \iff x = \sum_{i \in I} \lambda_i e_i = 0_E \quad \text{D'où ker}(u) = \{0_E\}$$

(iii) Si u surjective, $\forall y \in F, \exists x = \sum_{i \in I} \lambda_i e_i \in E \text{ avec } (\lambda_i)_{i \in I} \in K^I \text{ presque nulle } | y = u(x).$

$$On \ a \ alors: y = u \left(\sum_{i \ \in \ I} \lambda_i \ e_i \right) = \sum_{i \ \in \ I} \lambda_i \ f_i \in vect \left((f_i)_{i \in I} \ \right) : donc \ (f_i)_{i \in I} \ est \ génératrice$$

$$\underline{Si\ (f_i)_{i\in I}\ g\acute{e}n\acute{e}ratrice}.\ ,\ \forall\ y\in F,\ \exists\ (\lambda_t)_{\ i\in I}\in K^I\ presque\ nulle\ |\ \ y=\sum_{i\in I}\lambda_i\ f_i=\sum_{i\in I}\lambda_iu(e_i)=u\left(\sum_{i\in I}\lambda_i\ e_i\right)\in Im(u)$$

(iv) On regroupe le (ii) et le (iii)

Remarque: Le théorème précédent permet donc d'affirmer que si on connait un certain nombre de couples antécédent-image d'une application linéaire, on peut connaitre de façon unique cette application.

<u>Théorème</u>: Soit E et F deux K-e-v, E étant de dimension finie. Alors:

E et F sont isomorphes si et seulement si F est de dimension finie et dim(E) = dim(F)

Définition: Deux espaces sont dits isomorphes s'il existe un isomorphisme de l'un vers l'autre.

<u>Dem</u>: On prend une base de E et on utilise le résultat précédent.

Remarque: On en déduit une classification des espaces de dimension finie : les espaces de dimension finie sont classés selon leur dimension. Si la dimension est la même ils sont isomorphes et sinon non...

Caractérisation des isomorphismes en dimension finie

<u>Théorème</u>: Soit E et F deux K-e-v de dimension finie et de même dimension. Soit $u \in L(E,F)$. Alors : u est un isomorphisme $\Leftrightarrow u$ est injective $\Leftrightarrow u$ est surjective

Dem: On prend une base de E et son image par u. Cette famille est une base sssi c'est une famille libre ssi c'est une famille génératrice.

Caractérisation des endomorphismes inversibles en dimension finie

<u>Corollaire:</u> Soit E un K-e-v de dimension finie. Soit $u \in L(E)$. Alors : u est un automorphisme $\Leftrightarrow \exists v \in L(E) \mid u$ o $v = Id_E \Leftrightarrow \exists w \in L(E) \mid w$ o $u = Id_E$

 $\underline{\textbf{Dem}}$: On utilise le résultat précédent, en constatant que u o $v = Id_E$ entraîne u surjective et w o $u = Id_E$ entraîne u injective.

Dimension de L(E,F)

Théorème : Soit E et F deux K-e-v de dimension finie. Alors L(E,F) est de dimension finie et $dim(L(E,F)) = dim(E) \times dim(F)$.

Dem: On prend une base $(e_1, ..., e_n)$ de E. Soit φ l'application de L(E,F) vers F^n , qui à f associe $(f(e_1), ..., f(e_n))$. φ est clairement linéaire. De plus, d'après la détermination d'une application linéaire par la donnée de l'image d'une base, on en déduit que φ est bijective. Ainsi L(E,F) et Fⁿ sont isomorphes. Or Fⁿ est de dimension finie $n \times \dim(F)$, donc il en est de même pour L(E,F)

Restrictions aux sous-espaces d'une somme directe

Théorème : Soit E et F deux K-espaces vectoriels. On suppose que E se

décompose en $E = \bigoplus_{i=1}^p E_i$. Pour tout i dans $[\![1,p]\!]$, on considère $u_i \in L(E_i,F)$. Alors, il existe une et une seule application $u \in L(E,F)$ telle que, $\forall \ i \in [\![1,p]\!]$, $u_{\mid E_i} = u_i$

<u>Dem</u>: Existence. On considère l'application u de E vers F définie par : si $x \in E$ se décompose en $x = \sum_{j=1}^{p} x_{j}$ où pour tout

 $j, \, x_j \text{ est dans } E_j, \, \text{on pose } u(x) = \sum_{j=1}^p u_j(x_j) \, . \, \text{On v\'erifie ais\'ement que } u \text{ est lin\'eaire et que la restriction de } u \text{ sur } E_i \text{ est } u_i.$ $\underline{\text{Unicit\'e}}. \, \text{Supposons que nous ayons deux applications lin\'eaires de } E \text{ vers } F \text{ } u \text{ et } v \text{ telles que } \forall \text{ } i \in \llbracket 1, p \rrbracket, \, u_{\mid E_i} = u_i = v_{\mid E_i} \text{ et } v_{\mid E_i} = u_i = v_i = u_i = v_i = u_i \text{ et } v_{\mid E_i} = u_i = v_i = u_i = v_i = u_i = u_i$

Soit alors $x \in E$. x se décompose en $x = \sum_{j=1}^p x_j$ où pour tout j, x_j est dans E_j . Par linéarité de u et de v, comme u et v coïncident sur E_i pour tout j, on a u(x) = v(x). Ainsi u = v

IV) Théorème du rang

Théorème du rang

Théorème : Soit $f \in L(E,F)$. Soit H un supplémentaire de $\ker(f)$ dans E. Alors on a $f|_{H}$ est un isomorphisme de H sur Im(f).

<u>Dem</u>: Soit $u = f|_{H}$. Montrons que u est un isomorphisme de H sur Im(f).

- 1) <u>u est injective</u>: Soit $x \in \ker(u)$. On a $x \in H$ et u(x) = 0 = f(x). Donc $x \in H \cap \ker(f) = \{0_E\}$
- 2) u est surjective: Comme u est une restriction de f alors $Im(u) \subset Im(f)$.

Soit alors $y \in Im(f)$. $\exists x \in E \mid y = f(x)$. Mais $\exists (z,t) \in H \times ker(f) \mid x = z + t$.

D'où $f(x) = f(z) = u(z) \in Im(u)$. Ainsi $Im(f) \subset Im(u)$ et on a bien l'égalité.

Corollaire: Théorème du rang: Soit $f \in L(E,F)$ où E est de dimension finie. Alors $\dim(\mathbf{E}) = \dim(\ker(f)) + \operatorname{rg}(f)$

Dem: En reprenant les notations du th précédent, on a H de dimension finie et isomorphe à Im(f). Donc $\dim(H) = \operatorname{rg}(f)$. Or H est un supplémentaire de $\ker(f)$ d'où $\dim(E) = \dim(H) + \dim(\ker(f))$ le théorème du rang

V) Formes linéaires et hyperplan

Formes linéaires

Définition: Une forme linéaire sur E est une application linéaire de E sur K

Exemple: Si $\Re = (e_i)_{i \in I}$ est une base de E. Pour tout x de E, on peut écrire x sous la forme $x = \sum_i \lambda_i e_i$. Alors

l'application qui à x associe λ_i est une forme linéaire, appelée forme coordonnée relative au vecteur e_i de la base ${\mathfrak B}$

Hyperplan

Définition: On appelle **hyperplan** de E le noyau d'une forme linéaire non nulle sur E.

<u>Proposition</u>: Si E est de dimension finie n, les hyperplans de E sont les sous-espaces vectoriels de dimension n-1.

Dem: Si H est un hyperplan alors dim(H) = n-1 (car alors $dim(Im(\phi)) = 1$)

Si F est un sous-espace vectoriel de E. Soit $\mathfrak{B}=(e_1,\ldots,e_{n-1})$ une base de F. On la complète par e_n pour en faire une base de E. Soit $x\in E,\exists !(\lambda_1,\ldots,\lambda_n)\mid x=\lambda_1\ e_1+\lambda_2\ e_2+\ldots+\lambda_n\ e_n$.

Soit la forme linéaire φ qui à x associe la coordonnées λ_n en e_n . φ est non nulle et son noyau est H.

<u>Proposition</u>: Soit E un K espace vectoriel. Soit H un hyperplan de E. Soit D une droite vectorielle non incluse dans H. Alors : $E = H \oplus D$

 $\underline{\textbf{Dem}} \text{: Soit } \phi \text{ une forme linéaire non nulle de noyau H. D n'étant pas incluse dans H, il existe une vecteur a non nul tel que <math>D = \text{vect}(a)$ et $\phi(a) \neq 0_K$. On $a : \forall x \in D \setminus \{0_E\}, \ \phi(x) \neq 0_K$ et donc $D \cap H = \{0_E\}.$

De plus, si $x \in E$. En posant $\alpha = \phi(a)$, on a $\phi(x) = \phi(\lambda \ a)$ avec $\lambda = \phi(x) / \alpha$. Ainsi : $x - \lambda \ a \in H$ et donc x s'écrit comme somme d'un élément de D et d'un élément de H : E = D + H.

<u>Proposition</u>: Soit E un K espace vectoriel. Soit D une droite vectorielle de E. Alors tout supplémentaire de D dans E est un hyperplan.

<u>Dem</u>: Soit D une droite vectorielle, D = vect(a) et soit F un supplémentaire de D dans E. On considère u la forme linéaire sur D définie par $\forall \lambda \in K$, $u(\lambda \ a) = \lambda$. On considère alors ϕ l'unique forme linéaire de E dont la restriction à D est u et la restriction à F est la fonction nulle (cette fonction est bien définie d'après le résultat relatif aux restrictions aux espaces d'une somme directe). On montre aisément que ϕ une forme linéaire non nulle de noyau F et donc F est un hyperplan.

Equation d'un hyperplan Soit H un hyperplan. Soit φ une forme linéaire de noyau H. Alors l'équation $\varphi(x) = 0_E$ est une équation de l'hyperplan H.

Théorème: Deux formes linéaires non nulles ayant même noyau sont proportionnelles.

<u>**Dem**</u>: Soient φ et ψ ces formes linéaires et H leur noyau commun. Soit a un vecteur de E non dans H et D la droite engendrée par a: H et D sont supplémentaires dans E.

Or $\exists \alpha \in K^* \mid \varphi(\alpha) = \alpha \cdot \psi(\alpha)$ car a n'est pas dans H. Donc sur D, $\varphi = \alpha \cdot \psi(\alpha)$

Mais cette relation est vraie aussi sur H car ϕ et ψ y sont nulles. Donc elle est vraie sur E

<u>Propriété</u>: Soit E un espace de dimension finie n. Alors l'intersection de m hyperplans de E est de dimension supérieure ou égale à n-m.

<u>Propriété</u>: Soit E un espace de dimension finie n. Soit F un sev de E de dimension n-m. Alors F est l'intersection de m hyperplans.

Exemple: Les droites vectorielles du plan sont les hyperplans. Les plans vectoriels de l'espace sont les hyperplans. Les droites vectorielles de l'espace sont intersection de 2 plans non parallèles.

D) SOUS - ESPACES AFFINES

On se place dans un R espace vectoriel E de dimension finie n

I) Translation, sous-espaces affines

a) Translation

<u>Définition</u>: Soit A un vecteur de E. On appelle **translation** de vecteur A, notée t_A , l'application de E dans E définie par : $t_A(x) = A + x$.

b) Sous-espaces affines

<u>Définition</u>: Soit W une partie de E. On dit que W est un sous-espace affine de E si et seulement si c'est l'image d'un sous-espace vectoriel de E par une translation de E.

 $W = t_A(F)$ où A vecteur de E et F sous-espace vectoriel de E.

On a : W = $t_A(F) = \{ y \in E \mid \exists x \in F, y = A + x \}.$

Notation: On note W = A + F.

<u>Définition</u>: On appelle **points** (de W) les éléments de W. On appelle **vecteurs** (de W) les éléments de F

Remarque: Les éléments de E sont à la fois des points et des vecteurs.

Propriété Soit (A,B) \in E², F et G deux sous-espaces vectoriels de E. Alors :

 $A+F \subset B+G \otimes \Leftrightarrow A-B \in G \text{ et } F \subset G$

<u>Dem</u>: $\mathfrak{O} \Rightarrow \mathfrak{O}$. On suppose A+F \subset B+G.

Soit $x \in F$. On a: $A+x \in B+G$. Ainsi: $\exists z \in G \mid A+x = B+z$. Aussi A-B = z-x.

Pour $x = 0_E$, on $a : \exists z \in G$, $A-B = z \text{ d'où } A-B \in G$

Pour x quelconque, on a : $\exists z \in G$, $x = z + B - A \in G$ car $(B - A) \in G$. Aussi $F \subset G$.

 $\mathbb{O} \Rightarrow \mathbb{O}$. On suppose $(A-B) \in G$ et $F \subset G$.

Soit $M \in A+F$. $\exists x \in F \mid M = A+x \text{ donc } M = B + (A-B) + x$.

Soit u = (A-B) + x. On a $A-B \in G$ et $x \in F \subset G$. Ainsi $u \in G$. D'où $M \in B+G$.

<u>Corollaire</u> Si W est un sous-espace affine de E alors il existe un unique sous-espace vectoriel F de E tel que W = A + F avec A un point quelconque de W.

Dem: Si W = A+F = B+G. On a A+F \subset B+G et B+G \subset A+F. Aussi G = F.

Remarque: On a $F = \{x \in E \mid \exists (A,B) \in W^2, x = (B-A) = \overrightarrow{AB} \}$

On n'a pas (sauf si W est réduit à un point) unicité de A.

<u>Définition</u>: Soit W un sous-espace affine de E. On appelle direction de W (ou vectorialisé de W) cet unique sous-espace vectoriel F tel qu'il existe $A \in E$ avec W = A+F.

Exemple: Dans l'espace $E = \mathbb{R}^3$.

- Les sous-espaces affines de dimension 0 sont les points : A
- Les sous-espaces affines de dimension 1 sont les droites affines : $A + \mathbb{R} \ \underline{u}$
- Les sous-espaces affines de dimension 2 sont les plans affines : A + vect(u , v)
- La seule autre forme de sous-espace affine de \mathbb{R}^3 est \mathbb{R}^3 lui-même.

c) Sous-espaces affines parallèles

<u>Définition</u>: Soient W et W' deux sous-espaces affines de E. On dit que W est **parallèle** à W' si et seulement si la direction de W est incluse dans la direction de W'.

On dit que W et W' sont parallèles si et seulement si W et W' ont les mêmes directions.

Exemple: Les points sont parallèles à tous les sous-espaces affines.

- Dans l'espace E₃ deux droites sont parallèles si elles sont coplanaires et appartiennent respectivement à deux plans parallèles.
- Dans E₃ une droite peut être parallèle à un plan mais on ne peut pas avoir le contraire

d) Intersection de sous-espaces affines

Théorème : Soient W et W' deux sous-espaces affines. W = A+F et W' = B+G.

- 1) $W \cap W' \neq \emptyset$ ① \Leftrightarrow $B-A \in F+G$ ②
- 2) Si B-A \in F+G alors W \cap W' est un sous-espace affine Z de direction H = F \cap G.
- 3) Si $E = F \oplus G$ alors $W \cap W'$ est réduite à un point.

Dem: 1) ① \Rightarrow ②. Supposons W \cap W' $\neq \emptyset$.

Soit $M \in W \cap W'$. ∃ (x,y)
∈F×G | M = A + x = B + y . Ainsi B–A = x–y ∈ F+G

 $\textcircled{2}\Rightarrow \textcircled{1}$. On suppose que $A-B\in F+G$.

 $\exists (x,y) \mid B-A = x+y$. D'où: A+x = B+y' avec y' = -y. Mais $(A+x) \in W$ et $B+y' \in W'$.

Ainsi A+x est un élément de $W \cap W'$. Ainsi $W \cap W'$ est non vide.

2) Si B-A \in F+G. Soit C un élément de W \cap W'. On a W = C+F et W' = C+G.

Soit $M \in W \cap W'$. $\exists (x,y) \in F \times G \mid M = C + x$ et M = C + y. Aussi $x \in F \cap G$ et donc $M \in C + H$ avec $H = F \cap G$. D'où $W \cap W' \subset C + H$.

Réciproquement, soit Z = C+H. Soit $M \in Z$. $\exists y \in H \mid M = C+y$.

Or: $y \in F$ donc $M \in C + F$ et $y \in G$ donc $M \in C + G$. Ainsi $M \in W \cap W'$. $Z \subset W \cap W'$.

Ainsi $W \cap W'$ est un sous-espace affine de direction $H = F \cap G$.

3) Si $E = F \oplus G$. Alors $B-A \in F+G$ donc $W \cap W'$ est non vide et c'est un sous-espace affine de direction $F \cap G$ qui est de dimension 0. CQFD.

<u>Corollaire</u>: Soient W et W' deux sous-espaces affines parallèles. Alors soit W et W' sont confondus soit ils sont disjoints.

Application au plan

L'intersection de deux droites est soit une droite (si les droites sont confondues) soit vide (si elles sont parallèles et distinctes) soit réduite à un point sinon

Application à l'espace

L'intersection de deux plans est soit un plan (s'ils sont confondus) soit vide (s'ils sont parallèles et distincts) soit une droite 's'ils n'ont pas la même direction)

L'intersection d'un plan P et d'une droite D est soit vide (si $D /\!\!/ P$ et $D \not\subset P$) soit une droite (si $D \subset P$) soit réduite à un point (si la droite n'est pas parallèle au plan)

L'intersection de deux droites non coplanaires est vide. (Si les droites sont coplanaires, on utilise les résultats relatifs au plan)

<u>Propriété</u>: Soit $u \in L(E,F)$. Soit $b \in F$. L'ensemble des solutions de l'équation u(x) = b est sit vide soit un sous-espace affine de direction ker(u)

Dem: Déjà vu

Exemple: Les solutions d'un système linéaire s'obtiennent à l'aide du système homogène associé. Idem pour les équations différentielles linéaires d'ordre 1 ou 2. On a également le résultat pour la recherche des polynômes interpolateurs (un polynôme particulier + tous les polynômes s'annulant aux points d'interpolation)

Repère

<u>Définition</u>: Soit W = A + F un sous-espace affine de E. On appelle **repère** cartésien de W un couple $(O, \mathcal{B}) = \mathcal{R}$ où \mathcal{B} est une base de F et O un point de W. O s'appelle origine du repère .

Exemple : Repères cartésiens canoniques de ℝ², de ℝ³ et plus généralement de ℝ¹ Définition: Soit (O, ℬ) = ℜ un repère de W et M un point de W. On appelle coordonnées de M dans ℜ les coordonnées du vecteur OM dans la base ℬ