DEVOIR EN TEMPS LIBRE N° 16

Vous numéroterez vos copies et ferez apparaître clairement sur la première page le nombre de copies. Vous prêterez une attention particulière **au soin** de vos copies et à la qualité de votre argumentation

PROBLEME: Mines de Sup TSI 1996

On considère l'espace vectoriel \mathbb{R}^3 muni de la base canonique $\mathscr{B} = (e_1, e_2, e_3)$. On note $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 à coefficients réels.

On considère les matrices
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
On convient que si M est une matrice de $\mathcal{M}_3(\mathbb{R})$ alors $M^0 = \mathbf{I}$.

Si
$$P$$
 est un polynôme réel avec $P = \sum_{k=0}^{n} a_k X^k = a_0 + a_1 X + \dots + a_n X^n$ et si M est une matrice de

$$\mathcal{M}_3(\mathbb{R})$$
, on note $P(M)$ la matrice : $P(M) = \sum_{k=0}^n a_k M^k = a_0 \mathbf{I} + a_1 M + \dots + a_n M^n$.

PARTIE A

- 1. Montrer que **A** est inversible et calculer \mathbf{A}^{-1}
- 2. (a) Calculer \mathbf{A}^2 et \mathbf{A}^3
 - (b) Montrer que \mathbf{A} , \mathbf{A}^2 et \mathbf{A}^3 se mettent sous la forme : $\mathbf{A} = \lambda_1 \mathbf{A} + \mu_1 \mathbf{I}$, $\mathbf{A}^2 = \lambda_2 \mathbf{A} + \mu_2 \mathbf{I}$ et $\mathbf{A}^3 = \lambda_3 \mathbf{A} + \mu_3 \mathbf{I}$ où $(\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \mu_3)$ sont des réels que l'on précisera.
- 3. On donne la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ définie par : $\alpha_1=\alpha_2=1$ et $\forall n\in\mathbb{N}^*, \alpha_{n+2}=\alpha_{n+1}+2\alpha_n$. Montrer, par récurrence sur n, que : $\forall n\geqslant 2$, $\mathbf{A}^n=\alpha_n\mathbf{A}+2\alpha_{n-1}\mathbf{I}$
- 4. (a) Démontrer que, pour tout entier $n \ge 1$, $\alpha_n = \sigma (-1)^n + \tau 2^n$, où σ et τ sont deux réels indépendants de n que l'on déterminera
 - (b) En déduire l'expression de \mathbf{A}^n en fonction de n pour tout entier naturel n non nul.

PARTIE B

On note Id l'endomorphisme identité de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathscr{B} est \mathbf{A} .

- 1. (a) On pose $E_1 = \ker(f + Id)$ et $E_2 = \ker(f 2Id)$. Rappeler pourquoi E_1 et E_2 sont deux sous-espaces vectoriels de \mathbb{R}^3
 - (b) Déterminer E_1 et E_2 ainsi que leur nature géométrique. Donner une base \mathscr{C}_1 de E_1 et une base \mathscr{C}_2 de E_2 .
 - On choisira des vecteurs dont la première coordonnée est 1 et dont une coordonnée est nulle, lorsque cela est possible.
 - (c) Montrer que, si on appelle $\mathscr C$ la famille obtenue en effectuant la réunion de $\mathscr C_1$ et $\mathscr C_2$, on obtient une base de \mathbb{R}^3
 - (d) Montrer que $\mathbb{R}^3 = E_1 \oplus E_2$
 - (e) Soient f_1 et f_2 les restrictions de f à E_1 et E_2 . Déterminer les natures géométriques de f_1 et
- (a) Déterminer la matrice \mathbf{D} de f dans la base \mathscr{C}

- (b) Déterminer la matrice de passage \mathbf{P} de la base canonique \mathscr{B} vers la base \mathscr{C} .
- (c) Rappeler pourquoi \mathbf{P} est inversible et calculer son inverse \mathbf{P}^{-1}
- (d) Montrer que, pour tout entier n naturel non nul, $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$
- (e) En déduire la valeur de \mathbf{A}^n en fonction de n entier naturel non nul.

PARTIE C

- 1. (a) Calculer le produit $(\mathbf{A} + \mathbf{I})(\mathbf{A} 2\mathbf{I})$. En déduire à nouveau que \mathbf{A} est inversible et retrouver \mathbf{A}^{-1} .
 - (b) Calculer de même $(\mathbf{A} + \mathbf{I})^2$ et $(\mathbf{A} 2\mathbf{I})^2$, et en déduire une expression simple de $(\mathbf{A} + \mathbf{I})^n$ et $(\mathbf{A} 2\mathbf{I})^n$ pour tout entier n non nul.
- 2. On note $\mathbf{M}(a,b)$ la matrice de $\mathscr{M}_3(\mathbb{R})$ définie par $\mathbf{M}(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où $(a,b) \in \mathbb{R}^2$.
 - (a) On note l'ensemble $F = \{\mathbf{M}(a,b) | (a,b) \in \mathbb{R}^2 \}$. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - (b) Montrer que F est de dimension 2.
 - (c) Montrer que $((\mathbf{A} + \mathbf{I}), (\mathbf{A} 2\mathbf{I}))$ est une base de F.
 - (d) Calculer les coordonnées de $\mathbf{M}(a, b)$ dans cette base.
- 3. Calculer $(\mathbf{M}(a,b))^n$ pour tout entier naturel n non nul. Vérifier le résultat obtenu dans le cas particulier $\mathbf{M}(0,1)$

PARTIE D

Soit $n \in \mathbb{N}^*$ et soit R_n le reste de la division euclidienne du polynôme X^n par (X+1)(X-2).

- 1. (a) Que peut-on dire du degré de R_n ?
 - (b) Calculer $R_n(-1)$ et $R_n(2)$ puis déterminer le polynôme R_n .
 - (c) Montrer que les coefficients de R_n sont des entiers.
- 2. Retrouver à nouveau l'expression de \mathbf{A}^n

CORRIGE

 $\begin{array}{l} \textbf{O} n \text{ considère l'espace vectoriel } \mathbb{R}^3 \text{ muni de la base canonique } B = (e_1,e_2,e_3). \text{ On note } M_3(\mathbb{R}) \text{ l'ensemble des matrices carrées d'ordre 3 à coefficients réels.} \\ \textbf{On considère les matrices } \textbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ , } \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ . On convient que si M est une matrice de } M_3(\mathbb{R}) \text{ alors } M^0 = \mathbf{I}. \\ \end{array}$

Si P est un polynôme réel, $P = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + \ldots + a_n X^n$, et si M est une matrice de $M_3(\mathbb{R})$, on note : $P(M) = \sum_{i=0}^{n} a_i M^i = a_0 I + a_1 M + \ldots + a_n M^n$

1°) Montrer que **A** est inversible et calculer **A**⁻¹.

On a :
$$\mathbf{A}^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = 2\mathbf{I} + \mathbf{A}$$
 Aussi : $\left(\frac{1}{2}\mathbf{A} - \frac{1}{2}\mathbf{I}\right)\mathbf{A} = \mathbf{I}$ D'où **A inversible d'inverse :** $\mathbf{A}^{-1} = \frac{1}{2}\mathbf{A} - \frac{1}{2}\mathbf{I}$

$$\begin{pmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_1 \leftarrow L_3} \begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 - L_1} \begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 1 & -1 \\ 0 & 1 & 1 & | & 1 & 0 & 0 \end{pmatrix} \xrightarrow{L_3 \leftarrow L_3 + L_2} \begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 1 & -1 \\ 0 & 0 & 2 & | & 1 & 1 & -1 \end{pmatrix}$$

D'où A inversible d'inverse : $A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

 2°) a) Calculer A^2 et A^3 .

On a:
$$\mathbf{A}^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = 2 \mathbf{I} + \mathbf{A}$$
 et $\mathbf{A}^3 = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} = 2 \mathbf{I} + 3 \mathbf{A}$

b) Montrer que \mathbf{A} , \mathbf{A}^2 et \mathbf{A}^3 se mettent sous la forme: $\mathbf{A} = \lambda_1 \mathbf{A} + \mu_1 \mathbf{I}$, $\mathbf{A}^2 = \lambda_2 \mathbf{A} + \mu_2 \mathbf{I}$ et $\mathbf{A}^3 = \lambda_3 \mathbf{A} + \mu_3 \mathbf{I}$ où $(\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2, \mu_3)$ sont des réels que l'on précisera.

Soit P_n la propriété de récurrence : " $\mathbf{A}^n = \alpha_n \mathbf{A} + 2 \alpha_{n-1} \mathbf{I}$ "

 Φ P₂ vraie ? On a : $\mathbf{A}^2 = \mathbf{A} + 2\mathbf{I}$. Or $\alpha_1 = \alpha_2 = 1$ donc on a bien $\mathbf{A}^2 = \alpha_2 \mathbf{A} + 2\alpha_1 \mathbf{I}$ donc \mathbf{P}_2 est vraie

Ainsi on a montré que P₂ est vraie et que, si P_n vraie (avec n≥ 2), P_{n+1} est également vraie. Aussi, par le théorème de récurre on a: $\forall n \in \mathbb{N}$, $n \ge 2$, P_n vraie i.e. $\forall n \in \mathbb{N}$, $n \ge 2$, $A^n = \alpha_n A + 2 \alpha_{n-1} I$

a) Démontrer que, pour tout entier $n \in \mathbb{N}^*$, $\alpha_n = \sigma (-1)^n + \tau (2)^n$ où (σ, τ) sont deux réels indépendants de n que l'on déterminera.

Or les suites $((-1)^n)_{n \in \mathbb{N}^*}$ et $(2^n)_{n \in \mathbb{N}^*}$ sont deux suites de \tilde{S} linéairement indépendantes ; Ainsi elles forment une base de S

Or $\alpha_1 = \alpha_2 = 1$, donc en remplaçant dans (*) on trouve : $\sigma = -\frac{1}{3}$ et $\tau = \frac{1}{3}$ Ainsi : $\forall n \in \mathbb{N}^*$, $\alpha_n = \frac{1}{3} (2^n - (-1)^n)$

b) En déduire l'expression de A^n en fonction de n pour tout entier n non nul.

En remplaçant dans l'expression obtenue dans la question 3), on obtient :

 $\forall n \in \mathbb{N}, n \ge 2, A^n = \frac{1}{3}(2^n - (-1)^n)A + \frac{1}{3}(2^n + 2(-1)^n)I$ On constate de plus que cette expression reste vraie pour n = 1

On note Id l'endomorphisme identité de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans B est A.

a) On pose $E_1 = \ker(f + Id)$ et $E_2 = \ker(f - 2Id)$. Rappeler pourquoi E_1 et E_2 sont deux sous-espaces vectoriels de \mathbb{R}^3 .

f et Id étant deux endomorphismes de \mathbb{R}^3 , f + Id et f - 2 Id sont aussi deux endomorphismes de \mathbb{R}^3 . En particulier leurs noyaux respectifs sont des sous espaces vectoriels de \mathbb{R}^3 : \mathbf{E}_1 et \mathbf{E}_2 sont deux sous-espaces vectoriels de \mathbb{R}^3

b) Déterminer E_1 et E_2 ainsi que leur nature géométrique. Donner une base C_1 de E_1 et une base C_2 de E_2 . On détermine les noyaux E_1 et E_2 .

Soit
$$X = (x,y,z) \in \mathbb{R}^3$$
. $X \in E_1 \Leftrightarrow f(X) = -X \Leftrightarrow \begin{pmatrix} y+z \\ x+z \\ x+y \end{pmatrix} = -\begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow x+y+z=0 \Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -y \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} -z \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

Aussi E_1 est l'hyperplan de \mathbb{R}^3 d'équation x + y + z = 0, une base en est $C_1 = (\varepsilon_1, \varepsilon_2)$ où $\varepsilon_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $\varepsilon_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

```
Soit X = (x,y,z) \in \mathbb{R}^3. X \in E_2 \Leftrightarrow f(X) = 2 \times \left( \begin{array}{c} y+z \\ x+z \\ x+y \end{array} \right) = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} -2x+y+z=0 \\ x-2y+z=0 \\ x+y-2z=0 \end{cases} \Leftrightarrow \begin{cases} x+y-2z=0 \\ y-z=0 \\ y-z=0 \end{cases} \Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
    Aussi E_2 est la droite de \mathbb{R}^3 dirigée par le vecteur \varepsilon_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, une base en est C_2 = (\varepsilon_3)
```

c) Montrer que si l'on appelle C la famille obtenue en effectuant la réunion de C_1 et de C_2 , on obtient une base de \mathbb{R}^3 .

Soit $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$. On calcule le déterminant de C dans la base B.

On a:
$$det_B(C) = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{vmatrix} = 3 \neq 0$$
 Ainsi C est une base de \mathbb{R}^3

Remarque: On pouvait aussi montrer qu'il s'agissait d'une famille libre de 3 vecteurs dans \mathbb{R}^3 qui est de dimension 3 **d**) Montrer que: $\mathbb{R}^3 = E_1 \oplus E_2$

Montrons que $E_1 \cap E_2 = \{0_{\mathbf{p}_3}\}$. On a déjà $\{0_{\mathbf{m}_3}\} \subset E_1 \cap E_2$ car $E_1 \cap E_2$ est un s.e.v. de \mathbb{R}^3

Soit $X \in E_1 \cap E_2$. Puisque $X \in E_1$, on a : f(X) = -X. Puisque $X \in E_2$, on a : f(X) = 2X

D'où, en regroupant les deux résultats précédents, on obtient : -X = 2X i.e. 0_{m^3} Ainsi $E_1 \cap E_2 = \{0_{m_1}\}$

Or: $\dim(E_1) + \dim(E_2) = 2 + 1 = 3 = \dim(\mathbb{R}^3)$ donc, puisque E_1 et E_2 sont deux sous-espaces vectoriels de \mathbb{R}^3 en somme directe et dont la somme des dimensions vaut dim(R3), on a par caractérisation des sous-espaces supplémentaires en dimension finie : $\mathbb{R}^3 = \mathbb{E}_1 \oplus \mathbb{E}_2$

e) Soient f_1 et f_2 les restrictions de f à E_1 et E_2 . Déterminer les natures géométriques de f_1 et f_2

- $\forall X \in E_1, f(X) = -X \text{ donc } \forall X \in E_1, f_1(X) = -X : f_1 \text{ est l'homothétie de } E_1 \text{ de rapport } -1$
- $\forall X \in E_2$, f(X) = 2 X donc $\forall X \in E_2$, $f_2(X) = 2 X$: f_2 est l'homothétie de E_2 de rapport 2
- a) **D**éterminer la matrice **D** de f dans la base C.

Puisque ϵ_1 et ϵ_2 sont dans E_1 , on a : $f(\epsilon_1) = -\epsilon_1$ et $f(\epsilon_2) = -\epsilon_2$ De même : $f(\epsilon_3) = 2\epsilon_3$

$$D'o\grave{\mathbf{u}}: \textbf{mat}_{C}(\mathbf{f}) = \mathbf{D} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

 $b)\ D \text{\'e} terminer la matrice de passage}\ P\ de la base canonique\ B\ vers la base\ C.$

$$P = mat_B(C) = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

c) Rappeler pourquoi \mathbf{P} est inversible et calculer son inverse \mathbf{P}^{-1} .

P est la matrice de passage d'une base vers une autre donc P est inversible

Par la méthode du pivot, on trouve :
$$\mathbf{P}^{-1} = \mathbf{mat}_{\mathbb{C}}(\mathbf{B}) = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

d) Montrer que pour tout entier naturel n non nul, $\boldsymbol{A}^n = \boldsymbol{P} \; \boldsymbol{D}^n \; \boldsymbol{P}^{-1}$

D'après la formule de changement de bases, on a : $\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$

Par récurrence immédiate, on obtient : $A^n = P D^n P^{-1}$

e) En déduire la valeur de A^n en fonction de n pour tout entier n non nul.

Puisque **D** est diagonale, on calcule aisément sa puissance n-ième et on a : $\mathbf{D}^{\mathbf{n}} = \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 2^n \end{pmatrix}$

Ainsi, on obtient :
$$\mathbf{A}^{n} = \frac{1}{3} \begin{pmatrix} 2(-1)^{n} + 2^{n} & 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} \\ 2^{n} - (-1)^{n} & 2(-1)^{n} + 2^{n} & 2^{n} - (-1)^{n} \\ 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} & 2(-1)^{n} + 2^{n} \end{pmatrix}$$
 et on retrouve bien: $\mathbf{A}^{n} = \frac{1}{3}(2^{n} - (-1)^{n})\mathbf{A} + \frac{1}{3}(2^{n} + 2(-1)^{n})\mathbf{I}$

Partie C

a) Calculer le produit:
$$(\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2.\mathbf{I})$$
. En déduire à nouveau que \mathbf{A} est inversible et retrouver \mathbf{A}^{-1} . $(\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2.\mathbf{I}) = \mathbf{A}^2 + \mathbf{A} - 2 \mathbf{I} = \mathbf{A}^2 - \mathbf{A} - 2 \mathbf{I} = \mathbf{0}_3$ car $\mathbf{A}^2 = 2 \mathbf{I} + \mathbf{A}$ Donc: $(\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2.\mathbf{I}) = \mathbf{0}_3$

Ainsi :
$$\frac{1}{2}(\mathbf{A} - \mathbf{I}) \mathbf{A} = \mathbf{I}$$
 Aussi \mathbf{A} est inversible d'inverse : $\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - \mathbf{I})$ On retrouve bien $\mathbf{A}^{-1} = \frac{1}{2}\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$

b) Calculer de même $(\mathbf{A} + \mathbf{I})^2$, $(\mathbf{A} - 2.\mathbf{I})^2$ et en déduire une expression simple de : $(\mathbf{A} + \mathbf{I})^n$ et $(\mathbf{A} - 2.\mathbf{I})^n$ pour tout entier n non nul.

$$(\mathbf{A} + \mathbf{I})^2 = \mathbf{A}^2 + 2\mathbf{A} + \mathbf{I} = 3(\mathbf{A} + \mathbf{I}) \quad \text{car } \mathbf{A}^2 = 2\mathbf{I} + \mathbf{A} \quad \text{Donc} : (\mathbf{A} + \mathbf{I})^2 = 3(\mathbf{A} + \mathbf{I})$$

$$(\mathbf{A} - 2.\mathbf{I})^2 = \mathbf{A}^2 - 4\mathbf{A} + 4\mathbf{I} = -3(\mathbf{A} - 2.\mathbf{I})$$
 car $\mathbf{A}^2 = 2\mathbf{I} + \mathbf{A}$ Donc: $(\mathbf{A} - 2.\mathbf{I})^2 = -3(\mathbf{A} - 2.\mathbf{I})$

Soit P_n la propriété de récurrence : " $(\mathbf{A} + \mathbf{I})^n = 3^{n-1} (\mathbf{A} + \mathbf{I})$ et $(\mathbf{A} - 2.\mathbf{I})^n = (-3)^{n-1} (\mathbf{A} - 2.\mathbf{I})$ "

- **♦** P₁ est clairement vérifiée
- ♦ $\overline{\text{Si P}_n \text{ est vraie (avec } n \ge 1)}$, P_{n+1} est-elle également vraie? On a $(\mathbf{A} + \mathbf{I})^{n+1} = (\mathbf{A} + \mathbf{I})^n (\mathbf{A} + \mathbf{I}) = 3^{n-1} (\mathbf{A} + \mathbf{I})^2 = 3^$ De même: $(\mathbf{A} - 2.\mathbf{I})^n = (\mathbf{A} - 2.\mathbf{I})^n (\mathbf{A} - 2.\mathbf{I}) = (-3)^{n-1} (\mathbf{A} - 2.\mathbf{I})^2 = (-3)^n (\mathbf{A} - 2.\mathbf{I})$. Donc \mathbf{P}_{n+1} est vraie
- Ainsi on a montré que P_1 est vraie et que, si P_n vraie (avec $n \ge 1$), P_{n+1} est également vraie. Aussi, par le théorème de récurre on a: $\forall n \in \mathbb{N}^*$, P_n vraie i.e. $\forall n \in \mathbb{N}^*$, $(A + I)^n = 3^{n-1}$ (A + I) et $(A - 2.I)^n = (-3)^{n-1}$ (A - 2.I)

2) On note $\mathbf{M}(a,b)$ la matrice de $\mathbf{M}_3(\mathbb{R})$ définie par $\mathbf{M}(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où $(a,b) \in \mathbb{R}^2$.

a) et b) On note l'ensemble $F = \{ M(a,b) ; (a,b) \in \mathbb{R}^2 \}$. Montrer que F est un sous-espace vectoriel de $M_3(\mathbb{R})$. Montrer que F est de dimension 2.

 $Soit \ M \in \ M_3(\mathbb{R}). \ \ M \in \ F \Leftrightarrow \exists (a,b) \in \mathbb{R}^2 \ \big| \ M = \left(\begin{smallmatrix} a & b & b \\ b & a & b \\ b & b & a \end{smallmatrix}\right) \Leftrightarrow \exists (a,b) \in \mathbb{R}^2 \ \big| \ M = a \ \mathbf{I} + b \ \mathbf{A} \ \Leftrightarrow M \in \ vect \ (\mathbf{I},\mathbf{A})$

Ainsi $F = \text{vect }(I,A) : F \text{ est un sous-espace vectoriel de } M_3(\mathbb{R}) \text{ de dimension 2} \text{ (car } I \text{ et } A \text{ sont linéairement indépendants)}$ c) Montrer que (A + I), A - 2I est une base de A = A.

(A + I) et (A - 2I) sont deux éléments de F.

De plus si α et β sont deux rées tels que α (A + I) + β (A - 2I) = $\mathbf{0}_3$, alors on a $(\alpha + \beta)$ A + $(\alpha - 2\beta)$ I = $\mathbf{0}_3$ Donc comme

(I,A) libre, on obtient : $(\alpha + \beta) = (\alpha - 2\beta) = 0$ i.e. $\alpha = \beta = 0$

Aussi ((A + I), (A - 2I)) est une famille libre de F. C'est une famille libre d deux vecteurs de F qui est de dimension 2 donc c'est une base de F: ((A + I), (A - 2I)) est une base de F

 ${f d}$) Calculer les coordonnées de ${f M}(a,b)$ dans cette base.

On a: $I = \frac{1}{3}((A + I) - (A - 2I))$ et $A = \frac{1}{3}(2(A + I) + (A - 2I))$.

Ainsi: $M(a,b) = a I + b A = \frac{a+2b}{3} (A+I) + \frac{b-a}{3} (A-2I)$

Calculer $(\mathbf{M}(\mathbf{a},\mathbf{b}))^n$ pour tout entier n non nul. Vérifier le résultat obtenu dans le cas particulier $\mathbf{M}(0,1)$.

 $(\mathbf{A} + \mathbf{I})$ et $(\mathbf{A} - 2\mathbf{I})$ sont deux éléments de $M_3(\mathbb{R})$ qui commutent (pour le produit) car ce sont des polynômes en A.

De plus : $(\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2\mathbf{I}) = (\mathbf{A} - 2\mathbf{I}) (\mathbf{A} + \mathbf{I}) = \mathbf{0}_3$ et si $k \in \mathbb{N}$, $(\mathbf{A} + \mathbf{I})^{k+1}$ est colinéaire à $(\mathbf{A} + \mathbf{I})$ et $(\mathbf{A} - 2.\mathbf{I})^{k+1}$ à $(\mathbf{A} - 2.\mathbf{I})$ Ainsi, en utilisant la formule du binôme, on a, si $n \in \mathbb{N}^*$:

$$\begin{split} M(a,b)^{n} &= \left(\frac{a+2b}{3}\left(\mathbf{A}+\mathbf{I}\right) \right. + \frac{b-a}{3} \left. \left(\mathbf{A}-2\mathbf{I}\right) \right)^{n} = \sum_{k=0}^{n} C_{n}^{k} \left(\frac{a+2b}{3}\right)^{k} \left(\frac{b-a}{3}\right)^{n-k} \left(\mathbf{A}+\mathbf{I}\right)^{k} \left. \left(\mathbf{A}-2\mathbf{I}\right)^{n-k} \right. \\ &= \left. \left(\frac{a+2b}{3}\right)^{n} \left(\mathbf{A}+\mathbf{I}\right)^{n} + \left(\frac{b-a}{3}\right)^{n} \left(\mathbf{A}-2\mathbf{I}\right)^{n} + \\ &\sum_{k=1}^{n-1} C_{n}^{k} \left(\frac{a+2b}{3}\right)^{k} \left(\frac{b-a}{3}\right)^{n-k} \left(\mathbf{A}+\mathbf{I}\right)^{k} \left. \left(\mathbf{A}-2\mathbf{I}\right)^{n-k} \right. \\ &= \left(\frac{a+2b}{3}\right)^{n} \left. \left(\mathbf{A}+\mathbf{I}\right)^{n} + \left(\frac{b-a}{3}\right)^{n} \left(\mathbf{A}-2\mathbf{I}\right)^{n} \quad \text{car si } k \ge 1 \text{ et } n-k \ge 1, \left. \left(\mathbf{A}+\mathbf{I}\right)^{k} \left. \left(\mathbf{A}-2\mathbf{I}\right)^{n-k} \right. \\ &D'où \text{ si } n \ge 1, \ M(\mathbf{a},\mathbf{b})^{n} = \frac{(\mathbf{a}+2b)^{n}}{3} \left. \left(\mathbf{A}+\mathbf{I}\right) - \frac{(\mathbf{a}-\mathbf{b})^{n}}{3} \left(\mathbf{A}-2\mathbf{I}\right) \end{split}$$

Lorsque a = 0 et b = 1 on retrouve : $\mathbf{A}^n = \frac{1}{3} 2^n (\mathbf{A} + \mathbf{I}) - \frac{1}{3} (-1)^n (\mathbf{A} - 2\mathbf{I}) = \frac{1}{3} (2^n - (-1)^n) \mathbf{A} + \frac{1}{3} (2^n + 2(-1)^n) \mathbf{I}$

Partie D

Soit $n \in \mathbb{N}^*$ et soit R_n le reste de la division euclidienne du polynôme X^n par (X+1)(X-2)

 $\mathbf{1}^{\circ}$) **a**) Que peut-on dire du degré de R_n ?

Par le théorème de la division euclidienne, $deg(R_n) \le 1$

b) Calculer $R_n(-1)$ et $R_n(2)$ puis déterminer le polynôme R_n .

Il existe un polynôme Q_n tel que $X^n = (X + 1)(X - 2)Q_n + R_n$

En prenant les valeurs en 2 et en -1 dans cette expression, on obtient : $\mathbf{R}_{\mathbf{n}}(2) = 2^{\mathbf{n}}$ et $\mathbf{R}_{\mathbf{n}}(-1) = (-1)^{\mathbf{n}}$

Or R_n est un polynome de degré inférieur ou égal à 1 et on a $R_n(2) = 2^n$ et $R_n(-1) = (-1)^n$,

donc on a:
$$\mathbf{R}_n = \frac{2^n - (-1)^n}{3} \mathbf{X} + \frac{2^n + 2(-1)^n}{3}$$

c) Montrer que les coefficients de R_n sont des entiers.

Puisque $2 \equiv -1 \mod(3)$ et donc que $2^n \equiv (-1)^n \mod(3)$, on a $2^n - (-1)^n \equiv 0 \mod(3)$ et $2^n + 2(-1)^n \equiv 0 \mod(3)$ Ainsi $\frac{2^n - (-1)^n}{3}$ et $\frac{2^n + 2(-1)^n}{3}$ sont des entiers

2) Retrouver à nouveau l'expression de Aⁿ

On a:
$$\mathbf{A}^{n} = (\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2 \mathbf{I}) Q_{n}(\mathbf{A}) + R_{n}(\mathbf{A})$$
 car $\mathbf{X}^{n} = (\mathbf{X} + 1) (\mathbf{X} - 2) Q_{n} + R_{n}$
Or $(\mathbf{A} + \mathbf{I}) (\mathbf{A} - 2 \mathbf{I}) = \mathbf{0}_{3}$ Donc $\mathbf{A}^{n} = \mathbf{R}_{n}(\mathbf{A}) = \frac{2^{n} - (-1)^{n}}{3} \mathbf{A} + \frac{2^{n} + 2(-1)^{n}}{3} \mathbf{I}$